Harmonic Analysis of Operators on Hilbert Space

Harmonic Analysis of Operators on Hilbert Space

Author: Béla Sz Nagy

Publisher: Springer Science & Business Media

Published: 2010-09-01

Total Pages: 481

ISBN-13: 1441960937

DOWNLOAD EBOOK

The existence of unitary dilations makes it possible to study arbitrary contractions on a Hilbert space using the tools of harmonic analysis. The first edition of this book was an account of the progress done in this direction in 1950-70. Since then, this work has influenced many other areas of mathematics, most notably interpolation theory and control theory. This second edition, in addition to revising and amending the original text, focuses on further developments of the theory, including the study of two operator classes: operators whose powers do not converge strongly to zero, and operators whose functional calculus (as introduced in Chapter III) is not injective. For both of these classes, a wealth of material on structure, classification and invariant subspaces is included in Chapters IX and X. Several chapters conclude with a sketch of other developments related with (and developing) the material of the first edition.


Operator Theory and Complex Analysis

Operator Theory and Complex Analysis

Author: J. K. Aggarwal

Publisher: Springer Science & Business Media

Published: 1993-01-22

Total Pages: 436

ISBN-13: 9783764328245

DOWNLOAD EBOOK

This volume presents a set of papers based on the proceedings of the NATO Advanced Research Workshop on Multisensor Fusion for Computer Vision, held in Grenoble, France, in June 1989. The workshop focused on the fusion or integration of sensor information to achieve the optimum interpretation of a scene. The papers cover a broad range of topics, including principles and issues in multisensor fusion, information fusion for navigation, multisensor fusion for object recognition, network approaches to multisensor fusion, computer architectures for multisensor fusion, and applications of multisensor fusion. The authors have documented their own research and, in so doing,have presented the state of the art in the field. Each author is a recognized leader in his or her area in the academic, governmental, or industrial research community. Several contributors present novel points of view on the integration of information. The book gives a representative picture of current progress in multisensor fusion for computer vision among the leading research groups in Europe and North America.


Contributions to Operator Theory in Spaces with an Indefinite Metric

Contributions to Operator Theory in Spaces with an Indefinite Metric

Author: Aad Dijksma

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 419

ISBN-13: 3034888120

DOWNLOAD EBOOK

This volume is dedicated to Heinz Langer, a leading expert in spectral analysis and its applications, in particular to operators in spaces with an indefinite metric, on the occasion of his 60th birthday. The book begins with his biography and list of publications. It contains a selection of research papers, most of which are devoted to spectral analysis of operators or operator pencils with applications to ordinary and partial differential equations. Other papers deal with time-varying systems, interpolation and factorization problems, and topics from mathematical physics. About half of the papers contain further developments in the theory of operators in spaces with an indefinite metric and treat new applications. The book is of interest to a wide audience of pure and applied mathematicians.


Interpolation and Realization Theory with Applications to Control Theory

Interpolation and Realization Theory with Applications to Control Theory

Author: Vladimir Bolotnikov

Publisher: Springer

Published: 2019-04-08

Total Pages: 390

ISBN-13: 303011614X

DOWNLOAD EBOOK

This volume is devoted to Joseph A. (Joe) Ball’s contributions to operator theory and its applications and in celebration of his seventieth birthday. Joe Ball’s career spans over four and a half decades, starting with his work on model theory and related topics for non-contractions and operators on multiply connected domains. Later on, more applied operator theory themes appeared in his work, involving factorization and interpolation for operator-valued functions, with extensive applications in system and control theory. He has worked on nonlinear control, time-varying systems and, more recently, on multidimensional systems and noncommutative H∞-theory on the unit ball and polydisk, and more general domains, and these are only the main themes in his vast oeuvre. Fourteen research papers constitute the core of this volume, written by mathematicians who have collaborated with Joe or have been influenced by his vast mathematical work. A curriculum vitae, a publications list and a list of Joe Ball’s PhD students are included in this volume, as well as personal reminiscences by colleagues and friends. Contributions by Yu. M. Arlinskii, S. Hassi, M. Augat, J. W. Helton, I. Klep, S. McCullough, S. Balasubramanian, U. Wijesooriya, N. Cohen, Q. Fang, S. Gorai, J. Sarkar, G. J. Groenewald, S. ter Horst, J. Jaftha, A. C. M. Ran, M.A. Kaashoek, F. van Schagen, A. Kheifets, Z. A. Lykova, N. J. Young, A. E. Ajibo, R. T. W. Martin, A. Ramanantoanina, M.-J. Y. Ou, H. J. Woerdeman, A. van der Schaft, A. Tannenbaum, T. T. Georgiou, J. O. Deasy and L. Norton.


Classes of Linear Operators

Classes of Linear Operators

Author: Israel Gohberg

Publisher: Birkhäuser

Published: 2013-03-09

Total Pages: 563

ISBN-13: 303488558X

DOWNLOAD EBOOK

These two volumes constitute texts for graduate courses in linear operator theory. The reader is assumed to have a knowledge of both complex analysis and the first elements of operator theory. The texts are intended to concisely present a variety of classes of linear operators, each with its own character, theory, techniques and tools. For each of the classes, various differential and integral operators motivate or illustrate the main results. Although each class is treated seperately and the first impression may be that of many different theories, interconnections appear frequently and unexpectedly. The result is a beautiful, unified and powerful theory. The classes we have chosen are representatives of the principal important classes of operators, and we believe that these illustrate the richness of operator theory, both in its theoretical developments and in its applicants. Because we wanted the books to be of reasonable size, we were selective in the classes we chose and restricted our attention to the main features of the corresponding theories. However, these theories have been updated and enhanced by new developments, many of which appear here for the first time in an operator-theory text. In the selection of the material the taste and interest of the authors played an important role.


An Introduction to Models and Decompositions in Operator Theory

An Introduction to Models and Decompositions in Operator Theory

Author: Carlos S. Kubrusly

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 141

ISBN-13: 1461219981

DOWNLOAD EBOOK

By a Hilbert-space operator we mean a bounded linear transformation be tween separable complex Hilbert spaces. Decompositions and models for Hilbert-space operators have been very active research topics in operator theory over the past three decades. The main motivation behind them is the in variant subspace problem: does every Hilbert-space operator have a nontrivial invariant subspace? This is perhaps the most celebrated open question in op erator theory. Its relevance is easy to explain: normal operators have invariant subspaces (witness: the Spectral Theorem), as well as operators on finite dimensional Hilbert spaces (witness: canonical Jordan form). If one agrees that each of these (i. e. the Spectral Theorem and canonical Jordan form) is important enough an achievement to dismiss any further justification, then the search for nontrivial invariant subspaces is a natural one; and a recalcitrant one at that. Subnormal operators have nontrivial invariant subspaces (extending the normal branch), as well as compact operators (extending the finite-dimensional branch), but the question remains unanswered even for equally simple (i. e. simple to define) particular classes of Hilbert-space operators (examples: hyponormal and quasinilpotent operators). Yet the invariant subspace quest has certainly not been a failure at all, even though far from being settled. The search for nontrivial invariant subspaces has undoubtly yielded a lot of nice results in operator theory, among them, those concerning decompositions and models for Hilbert-space operators. This book contains nine chapters.