Practical Biomedical Signal Analysis Using MATLAB® presents a coherent treatment of various signal processing methods and applications. The book not only covers the current techniques of biomedical signal processing, but it also offers guidance on which methods are appropriate for a given task and different types of data. The first several chapters of the text describe signal analysis techniques—including the newest and most advanced methods—in an easy and accessible way. MATLAB routines are listed when available and freely available software is discussed where appropriate. The final chapter explores the application of the methods to a broad range of biomedical signals, highlighting problems encountered in practice. A unified overview of the field, this book explains how to properly use signal processing techniques for biomedical applications and avoid misinterpretations and pitfalls. It helps readers to choose the appropriate method as well as design their own methods.
"Spectral Audio Signal Processing is the fourth book in the music signal processing series by Julius O. Smith. One can say that human hearing occurs in terms of spectral models. As a result, spectral models are especially useful in audio applications. For example, with the right spectral model, one can discard most of the information contained in a sound waveform without changing how it sounds. This is the basis of modern audio compression techniques."--Publisher's description.
The SEM Handbook of Experimental Structural Dynamics stands as a comprehensive overview and reference for its subject, applicable to workers in research, product design and manufacture, and practice. The Handbook is devoted primarily to the areas of structural mechanics served by the Society for Experimental Mechanics IMAC community, such as modal analysis, rotating machinery, structural health monitoring, shock and vibration, sensors and instrumentation, aeroelasticity, ground testing, finite element techniques, model updating, sensitivity analysis, verification and validation, experimental dynamics sub-structuring, quantification of margin and uncertainty, and testing of civil infrastructure. Chapters offer comprehensive, detailed coverage of decades of scientific and technologic advance and all demonstrate an experimental perspective. Several sections specifically discuss the various types of experimental testing and common practices utilized in the automotive, aerospace, and civil structures industries. · History of Experimental Structural Mechanics · DIC Methods - Dynamic Photogrammetry · LDV Methods · Applied Digital Signal Processing · Introduction to Spectral - Basic Measurements · Structural Measurements - FRF · Random and Shock Testing · Rotating System Analysis Methods · Sensors Signal Conditioning Instrumentation · Design of Modal Tests · Experimental Modal Methods · Experimental Modal Parameter Evaluation · Operating Modal Analysis Methods · Analytical Numerical Substructuring · Finite Element Model Correlation · Model Updating · Damping of Materials and Structures · Model Calibration and Validation in Structures · Uncertainty Quantification: UQ, QMU and Statistics · Nonlinear System Analysis Methods (Experimental) · Structural Health Monitoring and Damage Detection · Experimental Substructure Modeling · Modal Modeling · Response (Impedance) Modeling · Nonlinear Normal Mode Analysis Techniques (Analytical) · Modal Modeling with Nonlinear Connection Elements (Analytical) · Acoustics of Structural Systems (VibroAcoustics) · Automotive Structural Testing · Civil Structural Testing · Aerospace Perspective for Modeling and Validation · Sports Equipment Testing · Applied Math for Experimental Structural Mechanics Contributions present important theory behind relevant experimental methods as well as application and technology. Topical authors emphasize and dissect proven methods and offer detail beyond a simple review of the literature. Additionally, chapters cover practical needs of scientists and engineers who are new to the field. In most cases, neither the pertinent theory nor, in particular, the practical issues have been presented formally in current academic textbooks. Each chapter in the Handbook represents a ’must read’ for someone new to the subject or for someone returning to the field after an absence. Reference lists in each chapter consist of the seminal papers in the literature. This Handbook stands in parallel to the SEM Handbook of Experimental Solid Mechanics, where this Handbook focuses on experimental dynamics of structures at a macro-scale often involving multiple components and materials where the SEM Handbook of Experimental Solid Mechanics focuses on experimental mechanics of materials at a nano-scale and/or micro-scale.
The book was written from lectures given at the University of Cambridge and maintains throughout a high level of rigour whilst remaining a highly readable and lucid account. Topics covered include the Planchard theory of the existence of Fourier transforms of a function of L2 and Tauberian theorems. The influence of G. H. Hardy is apparent from the presence of an application of the theory to the prime number theorems of Hadamard and de la Vallee Poussin. Both pure and applied mathematicians will welcome the reissue of this classic work. For this reissue, Professor Kahane's Foreword briefly describes the genesis of Wiener's work and its later significance to harmonic analysis and Brownian motion.
Shock & Vibration, Aircraft/Aerospace and Energy Harvesting, Volume 9: Proceedings of the 35th IMAC, A Conference and Exposition on Structural Dynamics, 2017, the ninth volume of ten from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Shock & Vibration, Aircraft/Aerospace and Energy Harvesting including papers on: Shock & Vibration Testing Aircraft/Aerospace Applications Optical Techniques: Digital Image Correlation Vibration Suppression & Control Damage Detection Energy Harvesting
The objective of the 2nd International Conference on Green Communications and Networks 2012 (GCN 2012) is to facilitate an exchange of information on best practices for the latest research advances in the area of communications, networks and intelligence applications. These mainly involve computer science and engineering, informatics, communications and control, electrical engineering, information computing, and business intelligence and management. Proceedings of the 2nd International Conference on Green Communications and Networks 2012 (GCN 2012) will focus on green information technology and applications, which will provide in-depth insights for engineers and scientists in academia, industry, and government. The book addresses the most innovative research developments including technical challenges, social and economic issues, and presents and discusses the authors’ ideas, experiences, findings, and current projects on all aspects of advanced green information technology and applications. Yuhang Yang is a professor at the Department of Electronic Engineering, Shanghai Jiao Tong University. Maode Ma is an associate professor at the School of Electrical & Electronic Engineering, Nanyang Technological University.
"For those involved in the design and implementation of signal processing algorithms, this book strikes a balance between highly theoretical expositions and the more practical treatments, covering only those approaches necessary for obtaining an optimal estimator and analyzing its performance. Author Steven M. Kay discusses classical estimation followed by Bayesian estimation, and illustrates the theory with numerous pedagogical and real-world examples."--Cover, volume 1.