Integrating Genomic Selection and Genome Editing Strategies to Accelerate Potato Breeding

Integrating Genomic Selection and Genome Editing Strategies to Accelerate Potato Breeding

Author: Felix Eugenio Enciso Rodriguez

Publisher:

Published: 2019

Total Pages: 167

ISBN-13: 9781392078624

DOWNLOAD EBOOK

As a staple food, the potato (Solanum tuberosum L.) plays an important role in human nutrition and it is currently the third most important food crop after rice and wheat. However, the potato crop faces high production losses caused mainly by biotic factors. With the advent of cutting-edge technologies suitable for potatoes, there is an increasing possibility to accelerate genetic progress and variety generation. To contribute to the implementation of genomic strategies to accelerate potato breeding, three different approaches were used. First, whole genome regressions were conducted using additive and dominant allele dosage models for late blight and common scab resistance in tetraploid potatoes. Multiple Single Nucleotide Polymorphisms (SNPs), contribute to late blight resistance, uncovering the introgression history for this trait whereas an unreported locus with a sizable contribution to common scab resistance was detected. Prediction accuracy assessments demonstrated that 90% of the genetic variance could be captured with an additive model, demonstrating the applicability of genomic prediction for tetraploid potato breeding. Second, a genome editing approach was implemented to breakdown the S-RNase -based self incompatibly in diploid potatoes. New S-RNase allelic variants, with flower-restricted expression, were identified in two self-incompatible (SI) diploid potatoes and mapped to chromosome I in a low recombination region. A dual single-guide RNA strategy was used to generate S-RNase knock-out lines producing premature stop codons on each targeted S-RNase allele. Self-compatibility was achieved in T0 knock-outs and stable transmitted to T1 lines. Additionally, Cas-9 free plants were also obtained. Plasticity in the self-compatible response was also observed in wild-type lines, presumably associated with non-stylar and environmental factors. Third, validation of the IPI-O4 -mediated suppression of the RB-based late blight resistance was conducted using in vivo and in vitro approaches. The hypersensitive response (HR) was confirmed when IPI-O1 was co-infiltrated with the RB gene from Solanum bulbocastanum using a heterologous system. However, HR was observed when IPI-O1 and IPI-O4 were infiltrated in transgenic potato lines carrying a synthetic RB gene containing a Coiled-Coil (CC) domain from S. pinnatisectum. Further work should be conducted to confirm this un-reported interaction. Similarly, we could not validate CC-dimerization using yeast-two hybrid assays and therefore more extensive experiments should be conducted to confirm this result. Ultimately, these genomic approaches open a new window to accelerate the generation of new potato varieties. Genomic selection strategies along with targeted mutagenesis will expand the boundaries of both approaches, reducing the potato breeding cycle considerably while maintaining genetic diversity, and providing access to genomic regions with low or null recombination in potatoes.


The Potato Genome

The Potato Genome

Author: Swarup Kumar Chakrabarti

Publisher: Springer

Published: 2017-12-26

Total Pages: 332

ISBN-13: 3319661353

DOWNLOAD EBOOK

This book describes the historical importance of potato (Solanum tuberosum L.),potato genetic resources and stocks (including S. tuberosum group Phureja DM1-3 516 R44, a unique doubled monoploid homozygous line) used for potato genome sequencing. It also discusses strategies and tools for high-throughput sequencing, sequence assembly, annotation, analysis, repetitive sequences and genotyping-by-sequencing approaches. Potato (Solanum tuberosum L.; 2n = 4x = 48) is the fourth most important food crop of the world after rice, wheat and maize and holds great potential to ensure both food and nutritional security. It is an autotetraploid crop with complex genetics, acute inbreeding depression and a highly heterozygous nature. Further, the book examines the recent discovery of whole genome sequencing of a few wild potato species genomes, genomics in management and genetic enhancement of Solanum species, new strategies towards durable potato late blight resistance, structural analysis of resistance genes, genomics resources for abiotic stress management, as well as somatic cell genetics and modern approaches in true-potato-seed technology. The complete genome sequence provides a better understanding of potato biology, underpinning evolutionary process, genetics, breeding and molecular efforts to improve various important traits involved in potato growth and development.


Potato Biology and Biotechnology

Potato Biology and Biotechnology

Author: Dick Vreugdenhil

Publisher: Elsevier

Published: 2011-08-31

Total Pages: 857

ISBN-13: 0080525059

DOWNLOAD EBOOK

In the past 15-20 years major discoveries have been concluded on potato biology and biotechnology. Important new tools have been developed in the area of molecular genetics, and our understanding of potato physiology has been revolutionized due to amenability of the potato to genetic transformation. This technology has impacted our understanding of the molecular basis of plant-pathogen interaction and has also opened new opportunities for the use of the potato in a variety of non-food biotechnological purposes. This book covers the potato world market as it expands further into the new millennium. Authors stress the overriding need for stable yields to eliminate human hunger and poverty, while considering solutions to enhance global production and distribution. It comprehensively describes genetics and genetic resources, plant growth and development, response to the environment, tuber quality, pests and diseases, biotechnology and crop management. Potato Biology is the most valuable reference available for all professionals involved in the potato industry, plant biologists and agronomists. Offers an understanding of the social, economic and market factors that influence production and distribution Discusses developments and useful traits in transgenic biology and genetic engineering The first reference entirely devoted to understanding new advances in potato biology and biotechnology


Gene Pool Diversity and Crop Improvement

Gene Pool Diversity and Crop Improvement

Author: Vijay Rani Rajpal

Publisher: Springer

Published: 2016-02-02

Total Pages: 487

ISBN-13: 3319270966

DOWNLOAD EBOOK

The world population is estimated to reach to more than 10 billion by the year 2050. These projections pose a challenging situation for the agricultural scientists to increase crops productivity to meet the growing food demands. The unavailability and/or inaccessibility to appropriate gene pools with desired traits required to carry out genetic improvement of various crop species make this task formidable for the plant breeders. Incidentally, most of the desired genes reside in the wild genetic relatives of the crop species. Therefore, exploration and characterization of wild genetic resources of important crop species is vital for the efficient utilization of these gene pools for sustainable genetic improvements to assure food security. Further, understanding the myriad complexities of genic and genomic interactions among species, more particularly of wild relatives of crop species and/or phylogenetically distant germplasm, can provide the necessary inputs to increase the effectiveness of genetic improvement through traditional and/or genetic engineering methods. This book provides comprehensive and latest insights on the evolutionary genesis of diversity, access and its utilization in the evolution of various crop species. A comprehensive account of various crops, origin, exploitation of the primary, secondary and tertiary gene pools through breeding, biosystematical, cytogenetical and molecular phylogenetical relationships, and genetic enhancement through biotechnological interventions among others have been provided as the necessary underpinnings to consolidate information on the effective and sustainable utilization of the related genetic resources. The book stresses upon the importance of wild germplasm exploration, characterization and exploitation in the assimilation of important crop species. The book is especially intended for students and scientists working on the genetic improvement of crop species. Plant Breeders, Geneticists, Taxonomists, Molecular Biologists and Plant Biotechnologists working on crop species are going to find this book very useful.


Potato Genetics

Potato Genetics

Author: J. E. Bradshaw

Publisher: Cabi

Published: 1994

Total Pages: 584

ISBN-13:

DOWNLOAD EBOOK

Origins, species and cytology. Theory and methods of genetical analysis. Cellular and molecular genetics. Environmental stress, morphology and quality. Inheritance of resistance to pests and diseases. Potato breeding.


Safety of Genetically Engineered Foods

Safety of Genetically Engineered Foods

Author: National Research Council

Publisher: National Academies Press

Published: 2004-07-08

Total Pages: 254

ISBN-13: 0309166152

DOWNLOAD EBOOK

Assists policymakers in evaluating the appropriate scientific methods for detecting unintended changes in food and assessing the potential for adverse health effects from genetically modified products. In this book, the committee recommended that greater scrutiny should be given to foods containing new compounds or unusual amounts of naturally occurring substances, regardless of the method used to create them. The book offers a framework to guide federal agencies in selecting the route of safety assessment. It identifies and recommends several pre- and post-market approaches to guide the assessment of unintended compositional changes that could result from genetically modified foods and research avenues to fill the knowledge gaps.


The Wild Solanums Genomes

The Wild Solanums Genomes

Author: Domenico Carputo

Publisher: Springer Nature

Published: 2021-09-21

Total Pages: 250

ISBN-13: 3030303438

DOWNLOAD EBOOK

This book gathers the latest information on the organization of genomes in wild Solanum species and emphasizes how this information is yielding direct outcomes in the fields of molecular breeding, as well as a better understanding of both the patterns and processes of evolution. Cultivated Solanums, such as potato, tomato, and pepper, possess a high number of wild relatives that are of great importance for practical breeding and evolutionary studies. Their germplasm is often characterized by allelic diversity, as well as genes that are lacking in the cultivated species. Wild Solanums have not been fully exploited by breeders. This is mainly due to the lack of information regarding their genetics and genomics. However, the genome of important cultivated Solanaceae such as potato, tomato, eggplant, and pepper has already been sequenced. On the heels of these recent developments, wild Solanum genomes are now becoming available, opening an exciting new era for both basic research and varietal development in the Solanaceae.


The Potato Crop

The Potato Crop

Author: Hugo Campos

Publisher: Springer Nature

Published: 2019-12-03

Total Pages: 524

ISBN-13: 3030286835

DOWNLOAD EBOOK

This book is open access under a CC BY 4.0 license. This book provides a fresh, updated and science-based perspective on the current status and prospects of the diverse array of topics related to the potato, and was written by distinguished scientists with hands-on global experience in research aspects related to potato. The potato is the third most important global food crop in terms of consumption. Being the only vegetatively propagated species among the world’s main five staple crops creates both issues and opportunities for the potato: on the one hand, this constrains the speed of its geographic expansion and its options for international commercialization and distribution when compared with commodity crops such as maize, wheat or rice. On the other, it provides an effective insulation against speculation and unforeseen spikes in commodity prices, since the potato does not represent a good traded on global markets. These two factors highlight the underappreciated and underrated role of the potato as a dependable nutrition security crop, one that can mitigate turmoil in world food supply and demand and political instability in some developing countries. Increasingly, the global role of the potato has expanded from a profitable crop in developing countries to a crop providing income and nutrition security in developing ones. This book will appeal to academics and students of crop sciences, but also policy makers and other stakeholders involved in the potato and its contribution to humankind’s food security.


Plant Breeding: Past, Present and Future

Plant Breeding: Past, Present and Future

Author: John E. Bradshaw

Publisher: Springer

Published: 2016-03-08

Total Pages: 710

ISBN-13: 3319232851

DOWNLOAD EBOOK

This book aims to help plant breeders by reviewing past achievements, currently successful practices, and emerging methods and techniques. Theoretical considerations are also presented to strike the right balance between being as simple as possible but as complex as necessary. The United Nations predicts that the global human population will continue rising to 9.0 billion by 2050. World food production will need to increase between 70-100 per cent in just 40 years. First generation bio-fuels are also using crops and cropland to produce energy rather than food. In addition, land area used for agriculture may remain static or even decrease as a result of degradation and climate change, despite more land being theoretically available, unless crops can be bred which tolerate associated abiotic stresses. Lastly, it is unlikely that steps can be taken to mitigate all of the climate change predicted to occur by 2050, and beyond, and hence adaptation of farming systems and crop production will be required to reduce predicted negative effects on yields that will occur without crop adaptation. Substantial progress will therefore be required in bridging the yield gap between what is currently achieved per unit of land and what should be possible in future, with the best farming methods and best storage and transportation of food, given the availability of suitably adapted cultivars, including adaptation to climate change. My book is divided into four parts: Part I is an historical introduction; Part II deals with the origin of genetic variation by mutation and recombination of DNA; Part III explains how the mating system of a crop species determines the genetic structure of its landraces; Part IV considers the three complementary options for future progress: use of sexual reproduction in further conventional breeding, base broadening and introgression; mutation breeding; and genetically modified crops.