"Disability and Academic Exclusion interrogates obstacles the disabled have encountered in education, from a historical perspective that begins with the denial of literacy to minorities in the colonial era to the later centuries' subsequent intolerance of writing, orality, and literacy mastered by former slaves, women, and the disabled. The text then questions where we stand today in regards to the university-wide rhetoric on promoting diversity and accommodating disability in the classroom." Amazon.com viewed 6/2/2020.
How mathematics helped build the world's most important buildings from early Egypt to the present From the pyramids and the Parthenon to the Sydney Opera House and the Bilbao Guggenheim, this book takes readers on an eye-opening tour of the mathematics behind some of the world's most spectacular buildings. Beautifully illustrated, the book explores the milestones in elementary mathematics that enliven the understanding of these buildings and combines this with an in-depth look at their aesthetics, history, and structure. Whether using trigonometry and vectors to explain why Gothic arches are structurally superior to Roman arches, or showing how simple ruler and compass constructions can produce sophisticated architectural details, Alexander Hahn describes the points at which elementary mathematics and architecture intersect. Beginning in prehistoric times, Hahn proceeds to guide readers through the Greek, Roman, Islamic, Romanesque, Gothic, Renaissance, and modern styles. He explores the unique features of the Pantheon, the Hagia Sophia, the Great Mosque of Cordoba, the Duomo in Florence, Palladio's villas, and Saint Peter's Basilica, as well as the U.S. Capitol Building. Hahn celebrates the forms and structures of architecture made possible by mathematical achievements from Greek geometry, the Hindu-Arabic number system, two- and three-dimensional coordinate geometry, and calculus. Along the way, Hahn introduces groundbreaking architects, including Brunelleschi, Alberti, da Vinci, Bramante, Michelangelo, della Porta, Wren, Gaudí, Saarinen, Utzon, and Gehry. Rich in detail, this book takes readers on an expedition around the globe, providing a deeper understanding of the mathematical forces at play in the world's most elegant buildings.
A straightedge, compass, and a little thought are all that's needed to discover the intellectual excitement of geometry. Harmonic division and Apollonian circles, inversive geometry, hexlet, Golden Section, more. 132 illustrations.
Challenging, accessible mathematical adventures involving prime numbers, number patterns, irrationals and iterations, calculating prodigies, and more. No special training is needed, just high school mathematics and an inquisitive mind. "A splendidly written, well selected and presented collection. I recommend the book unreservedly to all readers." — Martin Gardner.
Excursions in Classical Analysis will introduce students to advanced problem solving and undergraduate research in two ways: it will provide a tour of classical analysis, showcasing a wide variety of problems that are placed in historical context, and it will help students gain mastery of mathematical discovery and proof. The [Author]; presents a variety of solutions for the problems in the book. Some solutions reach back to the work of mathematicians like Leonhard Euler while others connect to other beautiful parts of mathematics. Readers will frequently see problems solved by using an idea that, at first glance, might not even seem to apply to that problem. Other solutions employ a specific technique that can be used to solve many different kinds of problems. Excursions emphasizes the rich and elegant interplay between continuous and discrete mathematics by applying induction, recursion, and combinatorics to traditional problems in classical analysis. The book will be useful in students' preparations for mathematics competitions, in undergraduate reading courses and seminars, and in analysis courses as a supplement. The book is also ideal for self study, since the chapters are independent of one another and may be read in any order.
Developed for the liberal arts math course by a seasoned author team,Mathematical Excursions,is uniquely designed to help students see math at work in the contemporary world. Using the proven Aufmann Interactive Method, students learn to master problem-solving in meaningful contexts. In addition, multi-partExcursionexercises emphasize collaborative learning. The text's extensive topical coverage offers instructors flexibility in designing a course that meets their students' needs and curriculum requirements. TheExcursionsactivity and correspondingExcursion Exercises,denoted by an icon, conclude each section, providing opportunities for in-class cooperative work, hands-on learning, and development of critical-thinking skills. These activities are also ideal for projects or extra credit assignments. TheExcursionsare designed to reinforce the material that has just been covered in the section in a fun and engaging manner that will enhance a student's journey and discovery of mathematics. The proven Aufmann Interactive Method ensures that students try concepts and manipulate real-life data as they progress through the material. Every objective contains at least one set of matched-pair examples. The method begins with a worked-out example with a solution in numerical and verbal formats to address different learning styles. The matched problem, calledCheck Your Progress,is left for the student to try. Each problem includes a reference to a fully worked out solution in an appendix to which the student can refer for immediate feedback, concept reinforcement, identification of problem areas, and prevention of frustration. Eduspace, powered by Blackboard, for the Aufmann/Lockwood/Nation/CleggMath Excursionscourse features algorithmic exercises and test bank content in question pools.
Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.
This invaluable textbook presents a comprehensive introduction to modern competitive programming. The text highlights how competitive programming has proven to be an excellent way to learn algorithms, by encouraging the design of algorithms that actually work, stimulating the improvement of programming and debugging skills, and reinforcing the type of thinking required to solve problems in a competitive setting. The book contains many “folklore” algorithm design tricks that are known by experienced competitive programmers, yet which have previously only been formally discussed in online forums and blog posts. Topics and features: reviews the features of the C++ programming language, and describes how to create efficient algorithms that can quickly process large data sets; discusses sorting algorithms and binary search, and examines a selection of data structures of the C++ standard library; introduces the algorithm design technique of dynamic programming, and investigates elementary graph algorithms; covers such advanced algorithm design topics as bit-parallelism and amortized analysis, and presents a focus on efficiently processing array range queries; surveys specialized algorithms for trees, and discusses the mathematical topics that are relevant in competitive programming; examines advanced graph techniques, geometric algorithms, and string techniques; describes a selection of more advanced topics, including square root algorithms and dynamic programming optimization. This easy-to-follow guide is an ideal reference for all students wishing to learn algorithms, and practice for programming contests. Knowledge of the basics of programming is assumed, but previous background in algorithm design or programming contests is not necessary. Due to the broad range of topics covered at various levels of difficulty, this book is suitable for both beginners and more experienced readers.
This lively, stimulating account of non-Euclidean geometry by a noted mathematician covers matrices, determinants, group theory, and many other related topics, with an emphasis on the subject's novel, striking aspects. 1955 edition.
The first edition of this single volume on the theory of probability has become a highly-praised standard reference for many areas of probability theory. Chapters from the first edition have been revised and corrected, and this edition contains four new chapters. New material covered includes multivariate and ratio ergodic theorems, shift coupling, Palm distributions, Harris recurrence, invariant measures, and strong and weak ergodicity.