The Hadron Mass Spectrum covers the proceedings of the Rheinfels Workshop on the Hadron Mass Spectrum, held in St. Goar, Germany on September 3-6, 1990. The book focuses on the processes, methodologies, and reactions involved in hadron spectroscopy. The selection first offers information on strange meson and strangeonium spectroscopy and strangeonium production from LASS. The book also takes a look at the status of strange meson spectroscopy, including status of the spectroscopy, systematics of the level structure, and contributions from LASS. The publication examines the scalar meson enigma and two photon couplings of scalar and tensor mesons. The manuscript also touches on rhoprimes, omegaprimes, and glueballs; meson production mechanisms and selection criteria for cryptoexotic states; and light meson spectroscopy and threshold effects. The selection is a dependable reference for readers interested in hadron mass spectrum.
This 2nd edition is an extensive update of "B Decays?. The revisions are necessary because of the extensive amount of new data and new theoretical ideas. This book reviews what is known about b-quark decays and also looks at what can be learned in the future.The importance of this research area is increasing, as evidenced by the approval of the luminosity upgrade for CESR and the asymmetric B factories at SLAC and KEK, and the possibility of experiments at hadron colliders.The key experimental observations made thus far, measurement of the lifetimes of the different B species, B0-B0 mixing, the discovery of ?Penguin? mediated decays, and the extraction of the CKM matrix elements Vub and Vcb from semileptonic decays, as well as more mundane results, are described in great detail by the experimentalists who have been closely involved with making the measurements. Theoretical progress in understanding b-quark decays using HQET and lattice gauge techniques are described by theorists who have developed and used these techniques.Synthesizing the experimental and theoretical information, several articles discuss the implications for the ?Standard Model? and how further tests can be done using measurements of CP violation in the B system.
The symposium focused on the following hot topics of particle physics, such as heavy flavor productions and decays; QCD corrections; EW symmetry breaking theories; precise tests of Standard Model and physics beyond Standard Model; CP violation and rare decays etc. There are 30 talks presented at the symposium by participants from all over the world, who are active in the forefront of the fields.
This book offers the first strong evidence of the existence of CP violation in neutral B decays extracted from sophisticated B factories in the US and Japan. It also holds out the expectation of rare B decays and D, K physics in the near future. In addition, new physics beyond the Standard Model is described. Both experimental and theoretical points of view are given.
CP violation is one of the most subtle effects in the Standard Model of particle physics and may be the first clue to the physics that lies beyond. Charge conjugation, C, and parity, P, are symmetries of particle interactions. C corresponds to the operation of replacing a particle by its antiparticle, while P is the operation of mirror reflection. Before 1956, it was believed that these were also symmetries of the interactions of elementary particles. In 1956, C S Wu found evidence for P violation in the weak interaction. Theorists proposed that the combination of CP would be a symmetry of the weak interaction. In 1964, Christenson, Cronin, Fitch and Turlay found the first evidence for the violation of CP symmetry in the decays of kaons.Although Kobayashi and Maskawa then showed how the Standard Model can accommodate the observed CP violation, Wolfenstein pointed out that it is also possible that there is a new interaction in addition to the usual four, called the superweak interaction, which is responsible for the asymmetry. To test this idea, the observation of a different type of asymmetry, called direct CP violation, is required; in the kaon sector, very precise measurements of the ratio of kaon decay rates are necessary. In B decay modes where a second order weak process whimisically named “penguin” interferes with another suppressed, first order “tree” amplitude, it may also be possible to observe these direct CP-violating effects.B physics and CP violation is now one of the major growth areas in high energy physics. Nearly every major high energy physics laboratory now has a project underway to observe the large CP asymmetries expected in the B sector and to test the consistency of the Standard Model. The unitarity of the Kobayashi-Maskawa mixing matrix in the Standard Model implies the existence of three phases, called alpha, beta and gamma, which can be determined by the measurements of CP asymmetries in B decays. About 200 participants gathered in Hawaii in March 1997 to discuss the progress in the field, and this important book constitutes the proceedings of that conference.
"The ultimate question of elementary particle physics is: What is the fundamental Lagrangian of nature surrounding us? The Lagrangian of the SM is very successful in describing nature at the currently available energy range. The discovery of the Higgs boson completed the particle spectrum of the SM and it is another proof of how well the SM works. Nevertheless the SM cannot be the end of the story and it is for sure not the fundamental Lagrangian of nature. The Lagrangian of the SM looses its validity at the latest at the Planck scale where gravitational effects become noticeable.Most physicists think of the SM as an effective theory that has to be replaced by a more fundamental theory above the TeV scale. What the word effective really means will hopefully be clear at later stages of our book. For the time being we will list some problems and open questions of the SM"--
These proceedings cover the latest results in Tevatron Collider Physics, LEP results, and results from other High Energy Physics Laboratories. The volume will consist of plenary and parallel contributions on the following subjects: Heavy Quark Physics, Physics Beyond the Standard Model, Astrophysics and Non-Accelerator Physics.
This book is the result of a broad-based and in-depth study of high energy physics commissioned by the Executive Committee of the Division of Particles and Fields of the American Physical Society. This year-long study was initiated in the early 1994, in the wake of the cancellation of the SSC, and is meant to complement the report of the Drell HEPAP subpanel, charged with providing a vision for the future of the field. The DPF study of high energy physics was organized on the basis of the working groups, each led by a number of co-conveners chosen among established leaders in the various subspecialties in the field. These conveners, in turn, organized their working groups by inviting other active workers in the discipline to participate and gathered further input from the community by holding a variety of specialized meetings and workshops. This book contains the final reports of the 11 working groups assembled for the study, along with an extended overview and executive summary by the editors.