Numerical Approximation of Exact Controls for Waves

Numerical Approximation of Exact Controls for Waves

Author: Sylvain Ervedoza

Publisher: Springer Science & Business Media

Published: 2013-02-17

Total Pages: 140

ISBN-13: 1461458080

DOWNLOAD EBOOK

​​​​​​This book is devoted to fully developing and comparing the two main approaches to the numerical approximation of controls for wave propagation phenomena: the continuous and the discrete. This is accomplished in the abstract functional setting of conservative semigroups.The main results of the work unify, to a large extent, these two approaches, which yield similaralgorithms and convergence rates. The discrete approach, however, gives not only efficient numerical approximations of the continuous controls, but also ensures some partial controllability properties of the finite-dimensional approximated dynamics. Moreover, it has the advantage of leading to iterative approximation processes that converge without a limiting threshold in the number of iterations. Such a threshold, which is hard to compute and estimate in practice, is a drawback of the methods emanating from the continuous approach. To complement this theory, the book provides convergence results for the discrete wave equation when discretized using finite differences and proves the convergence of the discrete wave equation with non-homogeneous Dirichlet conditions. The first book to explore these topics in depth, "On the Numerical Approximations of Controls for Waves" has rich applications to data assimilation problems and will be of interest to researchers who deal with wave approximations.​


Handbook of Differential Equations: Evolutionary Equations

Handbook of Differential Equations: Evolutionary Equations

Author: C.M. Dafermos

Publisher: Elsevier

Published: 2008-10-06

Total Pages: 609

ISBN-13: 0080931979

DOWNLOAD EBOOK

The material collected in this volume discusses the present as well as expected future directions of development of the field with particular emphasis on applications. The seven survey articles present different topics in Evolutionary PDE's, written by leading experts.- Review of new results in the area- Continuation of previous volumes in the handbook series covering Evolutionary PDEs- Written by leading experts


Observation and Control for Operator Semigroups

Observation and Control for Operator Semigroups

Author: Marius Tucsnak

Publisher: Springer Science & Business Media

Published: 2009-03-13

Total Pages: 488

ISBN-13: 3764389931

DOWNLOAD EBOOK

This book studies observation and control operators for linear systems where the free evolution of the state can be described by an operator semigroup on a Hilbert space. It includes a large number of examples coming mostly from partial differential equations.


Boundary Control of PDEs

Boundary Control of PDEs

Author: Miroslav Krstic

Publisher: SIAM

Published: 2008-01-01

Total Pages: 197

ISBN-13: 0898718600

DOWNLOAD EBOOK

The text's broad coverage includes parabolic PDEs; hyperbolic PDEs of first and second order; fluid, thermal, and structural systems; delay systems; PDEs with third and fourth derivatives in space (including variants of linearized Ginzburg-Landau, Schrodinger, Kuramoto-Sivashinsky, KdV, beam, and Navier-Stokes equations); real-valued as well as complex-valued PDEs; stabilization as well as motion planning and trajectory tracking for PDEs; and elements of adaptive control for PDEs and control of nonlinear PDEs.


Geometric Methods in Inverse Problems and PDE Control

Geometric Methods in Inverse Problems and PDE Control

Author: Chrisopher B. Croke

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 334

ISBN-13: 1468493752

DOWNLOAD EBOOK

This IMA Volume in Mathematics and its Applications GEOMETRIC METHODS IN INVERSE PROBLEMS AND PDE CONTROL contains a selection of articles presented at 2001 IMA Summer Program with the same title. We would like to thank Christopher B. Croke (University of Penn sylva nia), Irena Lasiecka (University of Virginia), Gunther Uhlmann (University of Washington), and Michael S. Vogelius (Rutgers University) for their ex cellent work as organizers of the two-week summer workshop and for editing the volume. We also take this opportunity to thank the National Science Founda tion for their support of the IMA. Series Editors Douglas N. Arnold, Director of the IMA Fadil Santosa, Deputy Director of the IMA v PREFACE This volume contains a selected number of articles based on lectures delivered at the IMA 2001 Summer Program on "Geometric Methods in Inverse Problems and PDE Control. " The focus of this program was some common techniques used in the study of inverse coefficient problems and control problems for partial differential equations, with particular emphasis on their strong relation to fundamental problems of geometry. Inverse coef ficient problems for partial differential equations arise in many application areas, for instance in medical imaging, nondestructive testing, and geophys ical prospecting. Control problems involving partial differential equations may arise from the need to optimize a given performance criterion, e. g. , to dampen out undesirable vibrations of a structure , or more generally, to obtain a prescribed behaviour of the dynamics.


Control Theory for Partial Differential Equations: Volume 1, Abstract Parabolic Systems

Control Theory for Partial Differential Equations: Volume 1, Abstract Parabolic Systems

Author: Irena Lasiecka

Publisher: Cambridge University Press

Published: 2000-02-13

Total Pages: 678

ISBN-13: 9780521434089

DOWNLOAD EBOOK

Originally published in 2000, this is the first volume of a comprehensive two-volume treatment of quadratic optimal control theory for partial differential equations over a finite or infinite time horizon, and related differential (integral) and algebraic Riccati equations. Both continuous theory and numerical approximation theory are included. The authors use an abstract space, operator theoretic approach, which is based on semigroups methods, and which is unifying across a few basic classes of evolution. The various abstract frameworks are motivated by, and ultimately directed to, partial differential equations with boundary/point control. Volume 1 includes the abstract parabolic theory for the finite and infinite cases and corresponding PDE illustrations as well as various abstract hyperbolic settings in the finite case. It presents numerous fascinating results. These volumes will appeal to graduate students and researchers in pure and applied mathematics and theoretical engineering with an interest in optimal control problems.