Insects are the most diverse group of organisms in the 3 billion-year history of life on Earth, and the most ecologically dominant animals on land. This book chronicles for the first time the complete evolutionary history of insects: their living diversity, relationships and 400 million years of fossils. Whereas other volumes have focused on either living species or fossils, this is the first comprehensive synthesis of all aspects of insect evolution. The book is illustrated with 955 photo- and electronmicrographs, drawings, diagrams, and field photos, many in full colour and virtually all of them original. The book will appeal to anyone engaged with insect diversity: professional entomologists and students, insect and fossil collectors, and naturalists.
This is the first single book to cover the whole of the fossil history of insects so comprehensively. The volume embraces subjects from the history of insect palaeontology to the diagnostic features of all insect orders, both extant and extinct.
Documents morphology, taxonomy, phylogeny, evolutionary changes, and interactions of 23 orders of insects from the Middle Jurassic and Early Cretaceous faunas in Northern China This book showcases 23 different orders of insect fossils from the Mid Mesozoic period (165 to 125 Ma) that were discovered in Northeastern China. It covers not only their taxonomy and morphology, but also their potential implications on natural sciences, such as phylogeny, function, interaction, evolution, and ecology. It covers fossil sites; paleogeology; co-existing animals and plants in well-balanced eco-systems; insects in the spotlight; morphological evolution and functional development; and interactions of insects with co-existing plants, vertebrates, and other insects. The book also includes many elegant and beautiful photographs, line drawings, and 3-D reconstructions of fossilized and extant insects. Rhythms of Insect Evolution: Evidence from the Jurassic and Cretaceous in Northern China features chapter coverage of such insects as the: Ephemeroptera; Odonata; Blattaria; Isoptera; Orthoptera; Notoptera; Dermaptera; Chresmodidae; Phasmatodea; Plecoptera; Psocoptera; Homoptera; Heteroptera; Megaloptera; Raphidioptera; Neuroptera; Coleoptera; Hymenoptera Diptera; Mecoptera; Siphonaptera; Trichoptera and Lepidoptera. Combines academic natural science, popular science, and artistic presentation to illustrate rhythms of evolution for fossil insects from the Mid Mesozoic of Northern China Documents morphology, taxonomy, phylogeny, and evolutionary changes of 23 orders of insects from the Middle Jurassic and Early Cretaceous faunas in Northern China Presents interactions of insects with plants, vertebrates, and other insects based on well-preserved fossil evidence Uses photos of extant insects and plants, fossil and amber specimens, line drawings, and 3-D computer-generated reconstruction artworks to give readers clear and enjoyable impressions of the scientific findings Introduces insect-related stories from western and Chinese culture in text or sidebars to give global readers broader exposures Rhythms of Insect Evolution: Evidence from the Jurassic and Cretaceous in Northern China will appeal to entomologists, evolutionists, paleontologists, paleoecologists, and natural scientists.
Contributors explore common elements in the evolutionary histories of both human and insect agriculture resulting from convergent evolution. During the past 12,000 years, agriculture originated in humans as many as twenty-three times, and during the past 65 million years, agriculture also originated in nonhuman animals at least twenty times and in insects at least fifteen times. It is much more likely that these independent origins represent similar solutions to the challenge of growing food than that they are due purely to chance. This volume seeks to identify common elements in the evolutionary histories of both human and insect agriculture that are the results of convergent evolution. The goal is to create a new, synthetic field that characterizes, quantifies, and empirically documents the evolutionary and ecological mechanisms that drive both human and nonhuman agriculture. The contributors report on the results of quantitative analyses comparing human and nonhuman agriculture; discuss evolutionary conflicts of interest between and among farmers and cultivars and how they interfere with efficiencies of agricultural symbiosis; describe in detail agriculture in termites, ambrosia beetles, and ants; and consider patterns of evolutionary convergence in different aspects of agriculture, comparing fungal parasites of ant agriculture with fungal parasites of human agriculture, analyzing the effects of agriculture on human anatomy, and tracing the similarities and differences between the evolution of agriculture in humans and in a single, relatively well-studied insect group, fungus-farming ants.
Chronicles the evolution of insects and explains how evolutionary innovations have enabled them to disperse widely, occupy narrow niches, and survive global catastrophes. --Publisher's description.
Researchers who study ancient human diets tend to focus on meat eating because the practice of butchery is very apparent in the archaeological record. In this volume, Julie Lesnik highlights a different food source, tracing evidence that humans and their hominin ancestors also consumed insects throughout the entire course of human evolution. Lesnik combines primatology, sociocultural anthropology, reproductive physiology, and paleoanthropology to examine the role of insects in the diets of hunter-gatherers and our nonhuman primate cousins. She posits that women would likely spend more time foraging for and eating insects than men, arguing that this pattern is important to note because women are too often ignored in reconstructions of ancient human behavior. Because of the abundance of insects and the low risk of acquiring them, insects were a reliable food source that mothers used to feed their families over the past five million years. Although they are consumed worldwide to this day, insects are not usually considered food in Western societies. Tying together ancient history with our modern lives, Lesnik points out that insects are highly nutritious and a very sustainable protein alternative. She believes that if we accept that edible insects are a part of the human legacy, we may have new conversations about what is good to eat—both in past diets and for the future of food.
The Evolution of Insects explores what we know about insect evolution, from theories of the past to recent breakthroughs in research. This title also looks at the science behind the research, from studying fossils to analyzing DNA. Features include a glossary, references, websites, source notes, and an index. Aligned to Common Core Standards and correlated to state standards. Essential Library is an imprint of Abdo Publishing, a division of ABDO.
"On the Wing is the first book to take a comprehensive look at the evolution of flight in all four groups of powered flyers: insects, pterosaurs, birds, and bats."--Book jacket.
This volume is an outgrowth of a Symposium entitled "Evolution of Escape in Space and Time" held at the XV International Congress of Entomology in Washington, D. C., USA in August, 1976. The choice of topic was prompted by recent advances in evolutionary ecology and the apparent suitability of insect migration and dia pause as appropriate material for evolutionary studies. In the event, that choice seems amply justified as I hope a perusal of these papers will show. These Sympos ium papers hardly cover the topic of the evolution of escape mechanisms exhaustively, and I am sure everyone will have his favorite lacuna. Some of the more obvious ones are indicated by Professor Southwood in his Concluding Remarks at the end of the book. The purpose of the Symposium, however, was not complete coverage, but rather to indicate the potential inherent in insect migration and diapause for the study of evolutionary problems. In that I think we have succeeded reasonably well. These papers are expanded and in some cases somewhat altered versions of the papers delivered in Washington. This has allowed greater coverage of the topics in question. I suggested a format of a general overview of a topic emphasizing the author's own research con tributions. In general the papers follow this outline although emphases vary. Two of the authors, Dr. Rainey and Dr. Lumme, were unable to attend the Symposium. Dr. Rainey's paper was read by Mr. Frank Walsh, but Dr.
'Social' insects and arachnids exhibit complex forms of behavior that involve cooperation in building a nest, defending against attackers or rearing offspring. This book is a comprehensive, up-to-date guide to sociality and its evolution in a wide range of taxa.