Blast Disease of Cereal Crops

Blast Disease of Cereal Crops

Author: S. Chandra Nayaka

Publisher: Springer Nature

Published: 2021-04-21

Total Pages: 227

ISBN-13: 303060585X

DOWNLOAD EBOOK

Blast is an important foliar disease that infects the majority of cereal crops like rice, finger millet, pearl millet, foxtail millet and wheat, and thus resulting in a huge economic impact. The pathogen is responsible for causing epidemics in many crops and commonly shifts to new hosts. Magnaporthe spp. is the most prominent cause of blast disease on a broad host range of grasses including rice as well as other species of poaceae family. To date, 137 members of Poaceae hosting this fungus have been described in Fungal Databases. This book provides information on all blast diseases of different cereal crops. The pathogen evolves quickly due to its high variability, and thus can quickly adapt to new cultivars and cause an epidemic in a given crop. Some of the topics covered here include historical perspectives, pathogen evolution, host range shift, cross-infectivity, and pathogen isolation, use of chemicals fungicides, genetics and genomics, and management of blast disease in different cereal crops with adoption of suitable methodologies.In the past two decades there have been significant developments in genomics and proteomics approaches and there has been substantial and rapid progress in the cloning and mapping of R genes for blast resistance, as well as in comparative genomics analysis for resolving delineation of Magnaporthe species that infect both cereals and grass species. Blast disease resistance follows a typical gene-for-gene hypothesis. Identification of new Avr genes and effector molecules from Magnaporthe spp. can be useful to understand the molecular mechanisms involved in the fast evolution of different strains of this fungal genus. Advances in these areas may help to reduce the occurrence of blast disease by the identification of potential R genes for effective deployment. Additionally, this book highlights the importance of blast disease that infects different cereal hosts in the context of climate change, and genomics approaches that may potentially help in understanding and applying new concepts and technologies that can make real impact in sustainable management of blast disease in different cereal crops.


Evolution and Adaptation of Cereal Crops

Evolution and Adaptation of Cereal Crops

Author: V. L. Chopra

Publisher:

Published: 2002

Total Pages: 320

ISBN-13:

DOWNLOAD EBOOK

Aimed at the professional and postgraduate reader, this text describes the evolution and adaptation of grain. A pragmatic approach has been taken wherein adaptation has been traced for crop traits preferred by consumer demand and agro-ecological requirements in the production areas.


Genetic Enhancement of Crops for Tolerance to Abiotic Stress: Mechanisms and Approaches, Vol. I

Genetic Enhancement of Crops for Tolerance to Abiotic Stress: Mechanisms and Approaches, Vol. I

Author: Vijay Rani Rajpal

Publisher: Springer

Published: 2019-04-24

Total Pages: 280

ISBN-13: 3319919563

DOWNLOAD EBOOK

Abiotic stresses such as drought (water deficit), extreme temperatures (cold, frost and heat), salinity (sodicity) and mineral (metal and metalloid) toxicity limit productivity of crop plants worldwide and are big threats to global food security. With worsening climate change scenarios, these stresses will further increase in intensity and frequency. Improving tolerance to abiotic stresses, therefore, has become a major objective in crop breeding programs. A lot of research has been conducted on the regulatory mechanisms, signaling pathways governing these abiotic stresses, and cross talk among them in various model and non-model species. Also, various ‘omics’ platforms have been utilized to unravel the candidate genes underpinning various abiotic stresses, which have increased our understanding of the tolerance mechanisms at structural, physiological, transcriptional and molecular level. Further, a wealth of information has been generated on the role of chromatin assembly and its remodeling under stress and on the epigenetic dynamics via histones modifications. The book consolidates outlooks, perspectives and updates on the research conducted by scientists in the abovementioned areas. The information covered in this book will therefore interest workers in all areas of plant sciences. The results presented on multiple crops will be useful to scientists in building strategies to counter these stresses in plants. In addition, students who are beginners in the areas of abiotic stress tolerance will find this book handy to clear their concepts and to get an update on the research conducted in various crops at one place


Crop Photosynthesis

Crop Photosynthesis

Author: N.R. Baker

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 471

ISBN-13: 1483291413

DOWNLOAD EBOOK

Since photosynthetic performance is a fundamental determinant of yield in the vast majority of crops, an understanding of the factors limiting photosynthetic productivity has a crucial role to play in crop improvement programmes. Photosynthesis, unlike the majority of physiological processes in plants, has been the subject of extensive studies at the molecular level for many years. This reductionist approach has resulted in the development of an impressive and detailed understanding of the mechanisms of light capture, energy transduction and carbohydrate biosynthesis, processes that are clearly central to the success of the plant and the productivity of crops. This volume examines in the widest context the factors determining the photosynthetic performance of crops. The emphasis throughout the book is on the setting for photosynthesis rather than the fundamental process itself. The book will prove useful to a wide range of plant scientists, and will encourage a more rapid integration of disciplines in the quest to understand and improve the productivity of crops by the procedures of classical breeding and genetic manipulation.


Crop Evolution, Adaptation and Yield

Crop Evolution, Adaptation and Yield

Author: L. T. Evans

Publisher: Cambridge University Press

Published: 1996-05-02

Total Pages: 516

ISBN-13: 9780521295581

DOWNLOAD EBOOK

In this major 1993 work, Lloyd Evans provides an integrated view of the domestication, adaptation and improvement of crop plants, bringing together genetic diversity, plant breeding, physiology and aspects of agronomy. Considerations of yield and maximum yield provide continuity throughout the book. Food, feed, fibre, fuel and pharmaceutical crops are all discussed. Cereals, grain legumes and root crops, both temperate and tropical, provide many of the examples, but pasture plants, oilseeds, leafy crops, fruit trees and others are also considered. After the introductory chapter, the increasing significance of crop yields to the world's food supply is highlighted. The next three chapters consider changes to crop plants over the last ten thousand years, including domestication, adaptation and improvement. Aimed at research workers and advanced students in crop physiology and ecology, agronomy and plant breeding, this book also reaches conclusions of relevance to those concerned with developmental policy, agricultural research and management, environmental quality, resource depletion and human history.


Darwinian Agriculture

Darwinian Agriculture

Author: R. Ford Denison

Publisher: Princeton University Press

Published: 2016-08-16

Total Pages: 269

ISBN-13: 0691173761

DOWNLOAD EBOOK

Harnessing evolution for more sustainable agriculture As human populations grow and resources are depleted, agriculture will need to use land, water, and other resources more efficiently and without sacrificing long-term sustainability. Darwinian Agriculture presents an entirely new approach to these challenges, one that draws on the principles of evolution and natural selection. R. Ford Denison shows how both biotechnology and traditional plant breeding can use Darwinian insights to identify promising routes for crop genetic improvement and avoid costly dead ends. Denison explains why plant traits that have been genetically optimized by individual selection—such as photosynthesis and drought tolerance—are bad candidates for genetic improvement. Traits like plant height and leaf angle, which determine the collective performance of plant communities, offer more room for improvement. Agriculturalists can also benefit from more sophisticated comparisons among natural communities and from the study of wild species in the landscapes where they evolved. Darwinian Agriculture reveals why it is sometimes better to slow or even reverse evolutionary trends when they are inconsistent with our present goals, and how we can glean new ideas from natural selection's marvelous innovations in wild species.


Genetics of Adaptation

Genetics of Adaptation

Author: Rodney Mauricio

Publisher: Springer Science & Business Media

Published: 2005-07-20

Total Pages: 207

ISBN-13: 1402038364

DOWNLOAD EBOOK

An enduring controversy in evolutionary biology is the genetic basis of adaptation. Darwin emphasized "many slight differences" as the ultimate source of variation to be acted upon by natural selection. In the early 1900’s, this view was opposed by "Mendelian geneticists", who emphasized the importance of "macromutations" in evolution. The Modern Synthesis resolved this controversy, concluding that mutations in genes of very small effect were responsible for adaptive evolution. A decade ago, Allen Orr and Jerry Coyne reexamined the evidence for this neo-Darwinian view and found that both the theoretical and empirical basis for it were weak. Orr and Coyne encouraged evolutionary biologists to reexamine this neglected question: what is the genetic basis of adaptive evolution? In this volume, a new generation of biologists have taken up this challenge. Using advances in both molecular genetic and statistical techniques, evolutionary geneticists have made considerable progress in this emerging field. In this volume, a diversity of examples from plant and animal studies provides valuable information for those interested in the genetics and evolution of complex traits.