Accident? Suicide? Murder? Montreal in 1969. The glory days of Expo 67 are fading and a home-grown separatist movement, the FLQ, is ramping up its terrorist activities. An old veteran dies; an accident, say the police, but his granddaughters Kit and Sondra disagree. Beginning their own investigations, they stir up danger, intrigue, and for Kit, the possibility of love, as they strive to unravel the mystery of their grandfather's death.
In 1992 the National Research Council issued DNA Technology in Forensic Science, a book that documented the state of the art in this emerging field. Recently, this volume was brought to worldwide attention in the murder trial of celebrity O. J. Simpson. The Evaluation of Forensic DNA Evidence reports on developments in population genetics and statistics since the original volume was published. The committee comments on statements in the original book that proved controversial or that have been misapplied in the courts. This volume offers recommendations for handling DNA samples, performing calculations, and other aspects of using DNA as a forensic toolâ€"modifying some recommendations presented in the 1992 volume. The update addresses two major areas: Determination of DNA profiles. The committee considers how laboratory errors (particularly false matches) can arise, how errors might be reduced, and how to take into account the fact that the error rate can never be reduced to zero. Interpretation of a finding that the DNA profile of a suspect or victim matches the evidence DNA. The committee addresses controversies in population genetics, exploring the problems that arise from the mixture of groups and subgroups in the American population and how this substructure can be accounted for in calculating frequencies. This volume examines statistical issues in interpreting frequencies as probabilities, including adjustments when a suspect is found through a database search. The committee includes a detailed discussion of what its recommendations would mean in the courtroom, with numerous case citations. By resolving several remaining issues in the evaluation of this increasingly important area of forensic evidence, this technical update will be important to forensic scientists and population geneticistsâ€"and helpful to attorneys, judges, and others who need to understand DNA and the law. Anyone working in laboratories and in the courts or anyone studying this issue should own this book.
This work provides a thought-provoking account of how medical treatments can be tested with unbiased or 'fair' trials and explains how patients can work with doctors to achieve this vital goal. It spans the gamut of therapy from mastectomy to thalidomide and explores a vast range of case studies.
Advances in medical, biomedical and health services research have reduced the level of uncertainty in clinical practice. Clinical practice guidelines (CPGs) complement this progress by establishing standards of care backed by strong scientific evidence. CPGs are statements that include recommendations intended to optimize patient care. These statements are informed by a systematic review of evidence and an assessment of the benefits and costs of alternative care options. Clinical Practice Guidelines We Can Trust examines the current state of clinical practice guidelines and how they can be improved to enhance healthcare quality and patient outcomes. Clinical practice guidelines now are ubiquitous in our healthcare system. The Guidelines International Network (GIN) database currently lists more than 3,700 guidelines from 39 countries. Developing guidelines presents a number of challenges including lack of transparent methodological practices, difficulty reconciling conflicting guidelines, and conflicts of interest. Clinical Practice Guidelines We Can Trust explores questions surrounding the quality of CPG development processes and the establishment of standards. It proposes eight standards for developing trustworthy clinical practice guidelines emphasizing transparency; management of conflict of interest ; systematic review-guideline development intersection; establishing evidence foundations for and rating strength of guideline recommendations; articulation of recommendations; external review; and updating. Clinical Practice Guidelines We Can Trust shows how clinical practice guidelines can enhance clinician and patient decision-making by translating complex scientific research findings into recommendations for clinical practice that are relevant to the individual patient encounter, instead of implementing a one size fits all approach to patient care. This book contains information directly related to the work of the Agency for Healthcare Research and Quality (AHRQ), as well as various Congressional staff and policymakers. It is a vital resource for medical specialty societies, disease advocacy groups, health professionals, private and international organizations that develop or use clinical practice guidelines, consumers, clinicians, and payers.
Information is precious. It reduces our uncertainty in making decisions. Knowledge about the outcome of an uncertain event gives the possessor an advantage. It changes the course of lives, nations, and history itself. Information is the food of Maxwell's demon. His power comes from know ing which particles are hot and which particles are cold. His existence was paradoxical to classical physics and only the realization that information too was a source of power led to his taming. Information has recently become a commodity, traded and sold like or ange juice or hog bellies. Colleges give degrees in information science and information management. Technology of the computer age has provided access to information in overwhelming quantity. Information has become something worth studying in its own right. The purpose of this volume is to introduce key developments and results in the area of generalized information theory, a theory that deals with uncertainty-based information within mathematical frameworks that are broader than classical set theory and probability theory. The volume is organized as follows.
Getting the right diagnosis is a key aspect of health care - it provides an explanation of a patient's health problem and informs subsequent health care decisions. The diagnostic process is a complex, collaborative activity that involves clinical reasoning and information gathering to determine a patient's health problem. According to Improving Diagnosis in Health Care, diagnostic errors-inaccurate or delayed diagnoses-persist throughout all settings of care and continue to harm an unacceptable number of patients. It is likely that most people will experience at least one diagnostic error in their lifetime, sometimes with devastating consequences. Diagnostic errors may cause harm to patients by preventing or delaying appropriate treatment, providing unnecessary or harmful treatment, or resulting in psychological or financial repercussions. The committee concluded that improving the diagnostic process is not only possible, but also represents a moral, professional, and public health imperative. Improving Diagnosis in Health Care, a continuation of the landmark Institute of Medicine reports To Err Is Human (2000) and Crossing the Quality Chasm (2001), finds that diagnosis-and, in particular, the occurrence of diagnostic errorsâ€"has been largely unappreciated in efforts to improve the quality and safety of health care. Without a dedicated focus on improving diagnosis, diagnostic errors will likely worsen as the delivery of health care and the diagnostic process continue to increase in complexity. Just as the diagnostic process is a collaborative activity, improving diagnosis will require collaboration and a widespread commitment to change among health care professionals, health care organizations, patients and their families, researchers, and policy makers. The recommendations of Improving Diagnosis in Health Care contribute to the growing momentum for change in this crucial area of health care quality and safety.
The U.S. Environmental Protection Agency (EPA) is one of several federal agencies responsible for protecting Americans against significant risks to human health and the environment. As part of that mission, EPA estimates the nature, magnitude, and likelihood of risks to human health and the environment; identifies the potential regulatory actions that will mitigate those risks and protect public health1 and the environment; and uses that information to decide on appropriate regulatory action. Uncertainties, both qualitative and quantitative, in the data and analyses on which these decisions are based enter into the process at each step. As a result, the informed identification and use of the uncertainties inherent in the process is an essential feature of environmental decision making. EPA requested that the Institute of Medicine (IOM) convene a committee to provide guidance to its decision makers and their partners in states and localities on approaches to managing risk in different contexts when uncertainty is present. It also sought guidance on how information on uncertainty should be presented to help risk managers make sound decisions and to increase transparency in its communications with the public about those decisions. Given that its charge is not limited to human health risk assessment and includes broad questions about managing risks and decision making, in this report the committee examines the analysis of uncertainty in those other areas in addition to human health risks. Environmental Decisions in the Face of Uncertainty explains the statement of task and summarizes the findings of the committee.
Misleading DNA Evidence: A Guide for Scientists, Judges, and Lawyers presents the reasons miscarriages of justice can occur when dealing with DNA, what the role of the forensic scientist is throughout the process, and how judges and lawyers can educate themselves about all of the possibilities to consider when dealing with cases that involve DNA evidence. DNA has become the gold standard by which a person can be placed at the scene of a crime, and the past decade has seen great advances in this powerful crime solving tool. But the statistics that analysts can attach to DNA evidence often vary, and in some cases the statistical weight assigned to that match, can vary enormously. The numbers provided to juries often overstate the evidence, and can result in a wrongful conviction. In addition to statistics, the way the evidence is collected, stored and analyzed can also result in a wrongful conviction due to contamination. This book reviews high-profile and somewhat contentious cases to illustrate these points, including the death of Meredith Kercher. It examines crucial topics such as characterization of errors and determination of error rates, reporting DNA profiles and the source and sub-source levels, and the essentials of statement writing. It is a concise, readable resource that will help not only scientists, but legal professionals with limited scientific backgrounds, to understand the intricacies of DNA use in the justice system. - Ideal reference for scientists and for those without extensive scientific backgrounds - Written by one of the pioneers in forensic DNA typing and interpretation of DNA profiling results - Ideal format for travel, court environments, or wherever easy access to reference material is vital
The Model Rules of Professional Conduct provides an up-to-date resource for information on legal ethics. Federal, state and local courts in all jurisdictions look to the Rules for guidance in solving lawyer malpractice cases, disciplinary actions, disqualification issues, sanctions questions and much more. In this volume, black-letter Rules of Professional Conduct are followed by numbered Comments that explain each Rule's purpose and provide suggestions for its practical application. The Rules will help you identify proper conduct in a variety of given situations, review those instances where discretionary action is possible, and define the nature of the relationship between you and your clients, colleagues and the courts.
One of the pathways by which the scientific community confirms the validity of a new scientific discovery is by repeating the research that produced it. When a scientific effort fails to independently confirm the computations or results of a previous study, some fear that it may be a symptom of a lack of rigor in science, while others argue that such an observed inconsistency can be an important precursor to new discovery. Concerns about reproducibility and replicability have been expressed in both scientific and popular media. As these concerns came to light, Congress requested that the National Academies of Sciences, Engineering, and Medicine conduct a study to assess the extent of issues related to reproducibility and replicability and to offer recommendations for improving rigor and transparency in scientific research. Reproducibility and Replicability in Science defines reproducibility and replicability and examines the factors that may lead to non-reproducibility and non-replicability in research. Unlike the typical expectation of reproducibility between two computations, expectations about replicability are more nuanced, and in some cases a lack of replicability can aid the process of scientific discovery. This report provides recommendations to researchers, academic institutions, journals, and funders on steps they can take to improve reproducibility and replicability in science.