Evaluation of the Protein Recognition Properties of Peptide Nucleic Acids

Evaluation of the Protein Recognition Properties of Peptide Nucleic Acids

Author: Crystal Cox Serrano

Publisher:

Published: 2015

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The objective is to evaluate the ability of aminoacyl-tRNA synthetases (aaRS) to recognize the non-standard nucleic acid, PNA (peptide nucleic acid). PNA has immense potential in biomedical applications due to its increased thermostability and nuclease resistance over natural nucleic acids. PNA represents a superior alternative to natural nucleic acids in many biomedical applications due to its specificity, strong binding, and nuclease resistance. This study is the initial data set that indicates PNA are recognized by translation enzymes.


Protein-Nucleic Acid Interactions

Protein-Nucleic Acid Interactions

Author: Phoebe A Rice

Publisher: Royal Society of Chemistry

Published: 2008-04-22

Total Pages: 416

ISBN-13: 1847558267

DOWNLOAD EBOOK

The structural biology of protein-nucleic acid interactions is in some ways a mature field and in others in its infancy. High-resolution structures of protein-DNA complexes have been studied since the mid 1980s and a vast array of such structures has now been determined, but surprising and novel structures still appear quite frequently. High-resolution structures of protein-RNA complexes were relatively rare until the last decade. Propelled by advances in technology as well as the realization of RNA's importance to biology, the number of example structures has ballooned in recent years. New insights are now being gained from comparative studies only recently made possible due to the size of the database, as well as from careful biochemical and biophysical studies. As a result of the explosion of research in this area, it is no longer possible to write a comprehensive review. Instead, current review articles tend to focus on particular subtopics of interest. This makes it difficult for newcomers to the field to attain a solid understanding of the basics. One goal of this book is therefore to provide in-depth discussions of the fundamental principles of protein-nucleic acid interactions as well as to illustrate those fundamentals with up-to-date and fascinating examples for those who already possess some familiarity with the field. The book also aims to bridge the gap between the DNA- and the RNA- views of nucleic acid - protein recognition, which are often treated as separate fields. However, this is a false dichotomy because protein - DNA and protein - RNA interactions share many general principles. This book therefore includes relevant examples from both sides, and frames discussions of the fundamentals in terms that are relevant to both. The monograph approaches the study of protein-nucleic acid interactions in two distinctive ways. First, DNA-protein and RNA-protein interactions are presented together. Second, the first half of the book develops the principles of protein-nucleic acid recognition, whereas the second half applies these to more specialized topics. Both halves are illustrated with important real life examples. The first half of the book develops fundamental principles necessary to understand function. An introductory chapter by the editors reviews the basics of nucleic acid structure. Jen-Jacobsen and Jacobsen discuss how solvent interactions play an important role in recognition, illustrated with extensive thermodynamic data on restriction enzymes. Marmorstein and Hong introduce the zoology of the DNA binding domains found in transcription factors, and describe the combinational recognition strategies used by many multiprotein eukaryotic complexes. Two chapters discuss indirect readout of DNA sequence in detail: Berman and Lawson explain the basic principles and illustrate them with in-depth studies of CAP, while in their chapter on DNA bending and compaction Johnson, Stella and Heiss highlight the intrinsic connections between DNA bending and indirect readout. Horvath lays out the fundamentals of protein recognition of single stranded DNA and single stranded RNA, and describes how they apply in a detailed analysis of telomere end binding proteins. Nucleic acids adopt more complex structures - Lilley describes the conformational properties of helical junctions, and how proteins recognize and cleave them. Because RNA readily folds due to the stabilizing role of its 2'-hydroxyl groups, Li discusses how proteins recognize different RNA folds, which include duplex RNA. With the fundamentals laid out, discussion turns to more specialized examples taken from important aspects of nucleic acid metabolism. Schroeder discusses how proteins chaperone RNA by rearranging its structure into a functional form. Berger and Dong discuss how topoisomerases alter the topology of DNA and relieve the superhelical tension introduced by other processes such as replication and transcription. Dyda and Hickman show how DNA transposes mediate genetic mobility and Van Duyne discusses how site-specific recombinases "cut" and "paste" DNA. Horton presents a comprehensive review of the structural families and chemical mechanisms of DNA nucleases, whereas Li in her discussion of RNA-protein recognition also covers RNA nucleases. Lastly, FerrÚ-D'AmarÚ shows how proteins recognize and modify RNA transcripts at specific sites. The book also emphasises the impact of structural biology on understanding how proteins interact with nucleic acids and it is intended for advanced students and established scientists wishing to broaden their horizons.


Nucleic Acid–Protein Recognition

Nucleic Acid–Protein Recognition

Author: Henry Vogel

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 614

ISBN-13: 0323144535

DOWNLOAD EBOOK

Nucleic Acid-Protein Recognition covers the proceedings of a symposium on ""Nucleic Acid-Protein Recognition"", held at Arden House, Harriman Campus of Columbia University on May 30-June 1, 1976. The symposium inaugurated the ""P & S Biomedical Sciences Symposia"" under the sponsorship of the College of Physicians and Surgeons of Columbia University. This book is organized into nine part encompassing 31 chapters. The opening parts describe the principles of DNA replication and the unique chromatin structure. These parts also examine the physical chemistry of the interactions of melting proteins with nucleic acids. The third part presents the different types of approaches that can be used to study the function of RNA polymerases and the development of a cell-free system that favors Pol II-catalyzed transcription from type 2 adenovirus DNA. Parts IV and V deal with the sequence determination of wild-type and mutant repressor and the restriction and modification of DNA endonucleases, while parts VI and VII focus of the recognition of tRNA. Part VIII discusses some significant studies on the assembly of ribosomes and the principles of ribosomal interactions. Lastly, Part IX considers the role of small RNA template in the reaction mechanism of RNA replicases and ribonucleases. This part also surveys the so-called RNase III cleavage of different types of RNA and the structure of nucleic acid-protein complexes.


Diagnostic Molecular Biology

Diagnostic Molecular Biology

Author: Chang-Hui Shen

Publisher: Elsevier

Published: 2023-06-29

Total Pages: 590

ISBN-13: 0323986099

DOWNLOAD EBOOK

Diagnostic Molecular Biology, Second Edition describes the fundamentals of molecular biology in a clear, concise manner with each technique explained within its conceptual framework and current applications of clinical laboratory techniques comprehensively covered. This targeted approach covers the principles of molecular biology, including basic knowledge of nucleic acids, proteins and chromosomes; the basic techniques and instrumentations commonly used in the field of molecular biology, including detailed procedures and explanations; and the applications of the principles and techniques currently employed in the clinical laboratory. Topics such as whole exome sequencing, whole genome sequencing, RNA-seq, and ChIP-seq round out the discussion. Fully updated, this new edition adds recent advances in the detection of respiratory virus infections in humans, like influenza, RSV, hAdV, hRV but also corona. This book expands the discussion on NGS application and its role in future precision medicine. Provides explanations on how techniques are used to diagnosis at the molecular level Explains how to use information technology to communicate and assess results in the lab Enhances our understanding of fundamental molecular biology and places techniques in context Places protocols into context with practical applications Includes extra chapters on respiratory viruses (Corona)


Peptide Nucleic Acids

Peptide Nucleic Acids

Author: Peter E. Nielsen

Publisher: Humana Press

Published: 2002-07-23

Total Pages: 274

ISBN-13: 9780896039766

DOWNLOAD EBOOK

Peptide nucleic acids (PNAs) have now existed for slightly more than ten years, with the interest in and applications of this pseudopeptide DNA mimic steadily increasing during the entire period. PNAs have rapidly attracted the attention of scientists from a diversity of fields ranging from (bio)organic and biophysical chemistry to prebiotic evolution, and from molecular biology to genetic diagnostics and drug development. Many of the applications take advantage of the unique properties of PNA—an uncharged pseudopeptide—that distinguish this DNA mimic from more traditional DNA analogs. Rather than trying to create a comprehensive collection of all published methods and protocols involving PNA—many of which have not yet been validated— I have decided to concentrate on select protocols that are either very well established by several groups around the world, such as PCR-clamping and in situ hybridization, or on new methods that may have broader future impact. Basic methods for PNA oligomer synthesis and analyses have also been included. I am very grateful to those friends and colleagues who have enthusiastically contributed their work, discussions, and writing, and thereby made this book possible. Peter E. Nielsen v Contents Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Contributors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix IINTRODUCTION 1 PNA Technology Peter E. Nielsen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 II CHEMISTRY 2 Solid Phase Synthesis of PNA Oligomers Frederik Beck. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3 Synthesis of PNA-Peptide Conjugates Satish Kumar Awasthi and Peter E. Nielsen. . . . . . . . . . . . . . . . . . 43 4 Parallel Synthesis of PNA-Peptide Conjugate Libraries Satish Kumar Awasthi and Peter E. Nielsen. . . . . . . . . . . . . . . . . .


Nucleic Acids

Nucleic Acids

Author: Victor A. Bloomfield

Publisher: Sterling Publishing Company

Published: 2000-04-17

Total Pages: 854

ISBN-13: 9780935702491

DOWNLOAD EBOOK

Providing a comprehensive account of the structures and physical chemistry properties of nucleic acids, with special emphasis on biological function, this text has been organized to meet the needs of those who have only a basic understanding of physical chemistry and molecular biology.


Cytogenomics

Cytogenomics

Author: Thomas Liehr

Publisher: Academic Press

Published: 2021-05-25

Total Pages: 430

ISBN-13: 0128235802

DOWNLOAD EBOOK

Cytogenomics demonstrates that chromosomes are crucial in understanding the human genome and that new high-throughput approaches are central to advancing cytogenetics in the 21st century. After an introduction to (molecular) cytogenetics, being the basic of all cytogenomic research, this book highlights the strengths and newfound advantages of cytogenomic research methods and technologies, enabling researchers to jump-start their own projects and more effectively gather and interpret chromosomal data. Methods discussed include banding and molecular cytogenetics, molecular combing, molecular karyotyping, next-generation sequencing, epigenetic study approaches, optical mapping/karyomapping, and CRISPR-cas9 applications for cytogenomics. The book’s second half demonstrates recent applications of cytogenomic techniques, such as characterizing 3D chromosome structure across different tissue types and insights into multilayer organization of chromosomes, role of repetitive elements and noncoding RNAs in human genome, studies in topologically associated domains, interchromosomal interactions, and chromoanagenesis. This book is an important reference source for researchers, students, basic and translational scientists, and clinicians in the areas of human genetics, genomics, reproductive medicine, gynecology, obstetrics, internal medicine, oncology, bioinformatics, medical genetics, and prenatal testing, as well as genetic counselors, clinical laboratory geneticists, bioethicists, and fertility specialists. Offers applied approaches empowering a new generation of cytogenomic research using a balanced combination of classical and advanced technologies Provides a framework for interpreting chromosome structure and how this affects the functioning of the genome in health and disease Features chapter contributions from international leaders in the field