Evaluation of Ocean-Energy Conversion Based on Linear Generator Concepts

Evaluation of Ocean-Energy Conversion Based on Linear Generator Concepts

Author: Michael A. Stelzer

Publisher: AuthorHouse

Published: 2012-07-03

Total Pages: 169

ISBN-13: 1477244948

DOWNLOAD EBOOK

EVALUATION OF OCEAN-ENERGY CONVERSION BASED ON LINEAR GENERATOR CONCEPTS As the world continues to demand greater productivity and lifestyle enrichment through technological advancements, the demand for electrical power is predicted to escalate dramatically. Thus far, this increased demand has been primarily supplied from fossil fueled plants. Unfortunately, the burning of fossil fuels produce harmful carbon dioxide pollution as a by-product. It has been hypothesized that unless a clean, renewable, and efficient alternate source of energy is found soon, the world may either exhaust its supplies of energy-producing materials or drastically degrade its environment. However, motions that occur naturally, such as ocean waves, can play a significant role in generating environmentally safe and economically viable energy for human utilization. The focus of this work predicts the electrical power generation capabilities from a seabed mounted linear generator tethered to a floating buoy heaving under the influence of passing ocean surface waves. Mathematical models are introduced which simulate the oceans' surface conditions under both the regular (basic) and irregular (natural) wave regimes, the heave (vertical displacement) response for a floating buoy, and the resulting electrical output parameters of the linear generator. Within these models, various physical and electrical parameters are altered in an attempt to generate a greater output power for a given sea state condition, making the Wave Energy Converter (WEC) more efficient. It is shown theoretically that the buoy can be designed to have a greater heave response than that of the height of a passing wave resulting in an increase in generated power from the linear generator. Author Information: Dr. Michael A. Stelzer is a Certified Project Manager and Senior Electronic Technician with a Ph.D. in Electrical and Computer Engineering. During his career to date, Mr. Stelzer has published four additional educational titles and has been admitted into Cambridge Who's Who top 101 industry experts.


An Evaluation of the U.S. Department of Energy's Marine and Hydrokinetic Resource Assessments

An Evaluation of the U.S. Department of Energy's Marine and Hydrokinetic Resource Assessments

Author: National Research Council

Publisher: National Academies Press

Published: 2013-04-23

Total Pages: 169

ISBN-13: 0309270049

DOWNLOAD EBOOK

Increasing renewable energy development, both within the United States and abroad, has rekindled interest in the potential for marine and hydrokinetic (MHK) resources to contribute to electricity generation. These resources derive from ocean tides, waves, and currents; temperature gradients in the ocean; and free-flowing rivers and streams. One measure of the interest in the possible use of these resources for electricity generation is the increasing number of permits that have been filed with the Federal Energy Regulatory Commission (FERC). As of December 2012, FERC had issued 4 licenses and 84 preliminary permits, up from virtually zero a decade ago. However, most of these permits are for developments along the Mississippi River, and the actual benefit realized from all MHK resources is extremely small. The first U.S. commercial gridconnected project, a tidal project in Maine with a capacity of less than 1 megawatt (MW), is currently delivering a fraction of that power to the grid and is due to be fully installed in 2013. As part of its assessment of MHK resources, DOE asked the National Research Council (NRC) to provide detailed evaluations. In response, the NRC formed the Committee on Marine Hydrokinetic Energy Technology Assessment. As directed in its statement of task (SOT), the committee first developed an interim report, released in June 2011, which focused on the wave and tidal resource assessments (Appendix B). The current report contains the committee's evaluation of all five of the DOE resource categories as well as the committee's comments on the overall MHK resource assessment process. This summary focuses on the committee's overarching findings and conclusions regarding a conceptual framework for developing the resource assessments, the aggregation of results into a single number, and the consistency across and coordination between the individual resource assessments. Critiques of the individual resource assessment, further discussion of the practical MHK resource base, and overarching conclusions and recommendations are explained in An Evaluation of the U.S. Department of Energy's Marine and Hydrokinetic Resource Assessment.


Handbook of Ocean Wave Energy

Handbook of Ocean Wave Energy

Author: Arthur Pecher

Publisher: Springer

Published: 2016-12-07

Total Pages: 305

ISBN-13: 331939889X

DOWNLOAD EBOOK

This book is open access under a CC BY-NC 2.5 license. This book offers a concise, practice-oriented reference-guide to the field of ocean wave energy. The ten chapters highlight the key rules of thumb, address all the main technical engineering aspects and describe in detail all the key aspects to be considered in the techno-economic assessment of wave energy converters. Written in an easy-to-understand style, the book answers questions relevant to readers of different backgrounds, from developers, private and public investors, to students and researchers. It is thereby a valuable resource for both newcomers and experienced practitioners in the wave energy sector.


Renewable Energy: Generation and Application

Renewable Energy: Generation and Application

Author: Ala A. Hussein

Publisher: Materials Research Forum LLC

Published: 2024-08-15

Total Pages: 400

ISBN-13: 1644903210

DOWNLOAD EBOOK

The book covers the current status of renewable energy technology, such as solar, wind, hydro and geothermal power engineering and biomass conversion. It focusses on technical challenges and potential future developments in electricity generation. electrical vehicles, heating and cooling, industrial processes and rural electrification. Keywords: Solar Energy, Wind Energy, Wind Farms. Hydropower, Hydroelectric Dams, Geothermal Energy, Biomass Energy, Agricultural Residues, Organic Waste, Electricity Transportation, Global Energy Systems.


Wave Energy Conversion

Wave Energy Conversion

Author: John Brooke

Publisher: Elsevier

Published: 2003-09-26

Total Pages: 205

ISBN-13: 0080543707

DOWNLOAD EBOOK

Wave energy, together with other renewable energy resources is expected to provide a small but significant proportion of future energy requirements without adding to pollution and global warming. This practical and concise reference considers alternative application methods, explains the concepts behind wave energy conversion and investigates wave power activities across the globe. Explores the potential of using the power generated by waves as a natural energy resource Considers the power transfer systems needed to do this, and looks at the environmental impacts


Energy Harvesting

Energy Harvesting

Author: Alireza Khaligh

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 529

ISBN-13: 1351834029

DOWNLOAD EBOOK

Also called energy scavenging, energy harvesting captures, stores, and uses "clean" energy sources by employing interfaces, storage devices, and other units. Unlike conventional electric power generation systems, renewable energy harvesting does not use fossil fuels and the generation units can be decentralized, thereby significantly reducing transmission and distribution losses. But advanced technical methods must be developed to increase the efficiency of devices in harvesting energy from environmentally friendly, "green" resources and converting them into electrical energy. Recognizing this need, Energy Harvesting: Solar, Wind, and Ocean Energy Conversion Systems describes various energy harvesting technologies, different topologies, and many types of power electronic interfaces for stand-alone utilization or grid connection of energy harvesting applications. Along with providing all the necessary concepts and theoretical background, the authors develop simulation models throughout the text to build a practical understanding of system analysis and modeling. With a focus on solar energy, the first chapter discusses the I−V characteristics of photovoltaic (PV) systems, PV models and equivalent circuits, sun tracking systems, maximum power point tracking systems, shading effects, and power electronic interfaces for grid-connected and stand-alone PV systems. It also presents sizing criteria for applications and modern solar energy applications, including residential, vehicular, naval, and space applications. The next chapter reviews different types of wind turbines and electrical machines as well as various power electronic interfaces. After explaining the energy generation technologies, optimal operation principles, and possible utilization techniques of ocean tidal energy harvesting, the book explores near- and offshore approaches for harvesting the kinetic and potential energy of ocean waves. It also describes the required absorber, turbine, and generator types, along with the power electronic interfaces for grid connection and commercialized ocean wave energy conversion applications. The final chapter deals with closed, open, and hybrid-cycle ocean thermal energy conversion systems.


Underwater Wireless Power Transfer

Underwater Wireless Power Transfer

Author: Taofeek Orekan

Publisher: Springer

Published: 2018-12-12

Total Pages: 109

ISBN-13: 3030025624

DOWNLOAD EBOOK

This book discusses, for the first time, wireless power transfer in the ocean environment. Topics covered include power electronic techniques, advanced control strategies, as well as classic and emerging applications such as smart ocean energy systems and wireless power transfer and charging of underwater autonomous vehicles. Emerging research topics are presented, along with methodologies, approaches, and industrial development of intelligent and energy-efficient techniques. Apart from the basic principles with an emphasis on inductive power transfer and mathematical analysis, the book discusses the emerging implementation for underwater wireless power transfer such as energy encryption, power and data transfer through common links, and secured data- and cyber-security. Specifically, the book comprehensively introduces significant discussions on UWPT coil theoretical and experimental analysis in seawater, optimal design, and intelligent controls. For example, since fast communication is not viable in an underwater environment, the proposed book discusses Maximum Power Efficiency Tracking (MPET) control, which achieves a maximum power efficiency (>85%) without communication or feedback from the transmitting side of the UWPT system. A k-nearest-neighbors-based machine learning approach is used to estimate the coupling coefficiency between the coils. This machine learning-based intelligent control method can offer important guidance for graduate students, academic researchers, and industrial engineers who want to understand the working principles and realize the developing trends in underwater wireless power transfer. Finally, the book includes details on the modeling and design of a smart ocean energy system--a new type of power harvesting system designed to convert ocean energy into electricity, which has the capability of making underwater wireless power connections with distributed marine devices.