This guide provides guidance to calibrate the Mechanistic-Empirical Pavement Design Guide (MEPDG) software to local conditions, policies, and materials. It provides the highway community with a state-of-the-practice tool for the design of new and rehabilitated pavement structures, based on mechanistic-empirical (M-E) principles. The design procedure calculates pavement responses (stresses, strains, and deflections) and uses those responses to compute incremental damage over time. The procedure empirically relates the cumulative damage to observed pavement distresses.
This volume on “Advancement in the Design and Performance of Sustainable Asphalt Pavements” includes a collection of research and practical papers from an international research and technology activities on Mixture Design Innovation, Structural Pavement Design, Advancement in Production and Construction, Climate Changes and Effects on Infrastructure, Green Energy, Technology and Integration. The volume constitutes an important contribution in view of the urgent need to develop materials, designs, and practices to ensure the sustainability of transportation infrastructure. This volume is part of the proceedings of the 1st GeoMEast International Congress and Exhibition on Sustainable Civil Infrastructures, Egypt 2017.
"This report summarizes the results of research to evaluate, calibrate, and validate the Enhanced Integrated Climatic Model (EICM) incorporated in the original Version 0.7 (July 2004 release) of the Mechanistic-Empirical Pavement Design Guide (MEPDG) software with measured materials data from the Long-Term Pavement Performance Seasonal Monitoring Program (LTPP SMP) pavement sections. The report further describes subsequent changes made to the EICM to improve its prediction of moisture equilibrium for granular bases. The report will be of particular interest to pavement design engineers in state highway agencies and industry ..."--Foreword.
Inspired from the legacy of the previous four 3DFEM conferences held in Delft and Athens as well as the successful 2018 AM3P conference held in Doha, the 2020 AM3P conference continues the pavement mechanics theme including pavement models, experimental methods to estimate model parameters, and their implementation in predicting pavement performance. The AM3P conference is organized by the Standing International Advisory Committee (SIAC), at the time of this publication chaired by Professors Tom Scarpas, Eyad Masad, and Amit Bhasin. Advances in Materials and Pavement Performance Prediction II includes over 111 papers presented at the 2020 AM3P Conference. The technical topics covered include: - rigid pavements - pavement geotechnics - statistical and data tools in pavement engineering - pavement structures - asphalt mixtures - asphalt binders The book will be invaluable to academics and engineers involved or interested in pavement engineering, pavement models, experimental methods to estimate model parameters, and their implementation in predicting pavement performance.
Introduction -- Mechanistic-Empirical Pavement Design Guide and AASHTOWare Pavement ME Design (TM) Software Overview -- Survey of Agency Pavement Design Practices -- Common Elements of Agency Implementation Plans -- Case Examples of Agency Implementation -- Conclusions.
Life-Cycle Civil Engineering: Innovation, Theory and Practice contains the lectures and papers presented at IALCCE2020, the Seventh International Symposium on Life-Cycle Civil Engineering, held in Shanghai, China, October 27-30, 2020. It consists of a book of extended abstracts and a USB card containing the full papers of 230 contributions, including the Fazlur R. Khan lecture, eight keynote lectures, and 221 technical papers from all over the world. All major aspects of life-cycle engineering are addressed, with special emphasis on life-cycle design, assessment, maintenance and management of structures and infrastructure systems under various deterioration mechanisms due to various environmental hazards. It is expected that the proceedings of IALCCE2020 will serve as a valuable reference to anyone interested in life-cycle of civil infrastructure systems, including students, researchers, engineers and practitioners from all areas of engineering and industry.
Design related project level pavement management - Economic evaluation of alternative pavement design strategies - Reliability / - Pavement design procedures for new construction or reconstruction : Design requirements - Highway pavement structural design - Low-volume road design / - Pavement design procedures for rehabilitation of existing pavements : Rehabilitation concepts - Guides for field data collection - Rehabilitation methods other than overlay - Rehabilitation methods with overlays / - Mechanistic-empirical design procedures.