Fracture, Design Analysis of Pressure Vessels, Heat Exchangers, Piping Components, and Fitness for Service, 1999

Fracture, Design Analysis of Pressure Vessels, Heat Exchangers, Piping Components, and Fitness for Service, 1999

Author: Kenneth K. Yoon

Publisher:

Published: 1999

Total Pages: 444

ISBN-13:

DOWNLOAD EBOOK

Contains papers from an August 1999 conference on fracture mechanics analysis, design and analysis of piping and components, fitness for service and life evaluation, and design analysis of pressure vessels, heat exchangers, and components. Specific areas of investigation include prediction of creep


Fatigue Damage

Fatigue Damage

Author: Christi Lalanne

Publisher: CRC Press

Published: 2002-03-29

Total Pages: 376

ISBN-13: 9781560329893

DOWNLOAD EBOOK

About the Series: This important new series of five volumes has been written with both the professional engineers and the academic in mind. Christian Lalanne explores every aspect of vibration and shock, two fundamental and crucially important areas of mechanical engineering, from both the theoretical and practical standpoints. As all products need to be designed to withstand the environmental conditions to which they are likely to be subjected, prototypes must be verified by calculation and laboratory tests, the latter according to specifications from national or international standards. The concept of tailoring the product to its environment has gradually developed whereby, from the very start of a design project, through the to the standards specifications and testing procedures on th e prototype, the real environment in which the product being tested will be functioning is taken into account. The five volumes of Mechanical Shock and Vibration cover all the issues that need to be addressed in this area of mechanical engineering. The theoretical analyses are placed in the context of the real world and of laboratory tests - essential for the development of specifications. Volume IV: Fatigue Damage Fatigue damage in a system with one degree of freedom is one of the two criteria applied when comparing the severity of vibratory environments. The same criterion is also employed for a specifciation representing the effects produced by the set of vibrations imposed in a real environment. In this volume, which is devoted to the calculation of fatigue damage, the author explores the hypotheses adopted to describe the behavior of material suffering fatigue and the laws of fatigue accumulation. He also considers the methods of counting the response peaks, which are used to establish the histogram when it is impossible to use the probability density of the peaks obtained with a Gaussian signal. The expressions for mean damage and its standard deviation are established and other hypotheses are tested.


Metal Plasticity and Fatigue at High Temperature

Metal Plasticity and Fatigue at High Temperature

Author: Denis Benasciutti

Publisher: MDPI

Published: 2020-05-20

Total Pages: 220

ISBN-13: 3039287702

DOWNLOAD EBOOK

In several industrial fields (such as automotive, steelmaking, aerospace, and fire protection systems) metals need to withstand a combination of cyclic loadings and high temperatures. In this condition, they usually exhibit an amount—more or less pronounced—of plastic deformation, often accompanied by creep or stress-relaxation phenomena. Plastic deformation under the action of cyclic loadings may cause fatigue cracks to appear, eventually leading to failures after a few cycles. In estimating the material strength under such loading conditions, the high-temperature material behavior needs to be considered against cyclic loading and creep, the experimental strength to isothermal/non-isothermal cyclic loadings and, not least of all, the choice and experimental calibration of numerical material models and the selection of the most comprehensive design approach. This book is a series of recent scientific contributions addressing several topics in the field of experimental characterization and physical-based modeling of material behavior and design methods against high-temperature loadings, with emphasis on the correlation between microstructure and strength. Several material types are considered, from stainless steel, aluminum alloys, Ni-based superalloys, spheroidal graphite iron, and copper alloys. The quality of scientific contributions in this book can assist scholars and scientists with their research in the field of metal plasticity, creep, and low-cycle fatigue.


Low Cycle Fatigue and Elasto-Plastic Behaviour of Materials

Low Cycle Fatigue and Elasto-Plastic Behaviour of Materials

Author: P.D. Portella

Publisher: Elsevier

Published: 1998-09-30

Total Pages: 890

ISBN-13: 0080549942

DOWNLOAD EBOOK

The 4th International Conference on Low Cycle Fatigue and Elasto-Plastic Behaviour of Materials was held from 7-11 September 1998 in Garmisch-Partenkirchen, Germany. In response to a call for papers, nearly 200 extended abstracts from 32 countries were submitted to the organizing committee. These papers were presented at the conference as invited lectures or short contributions and as oral or poster presentation. All the papers were presented in poster form in extended poster sessions–a peculiarity of the LCF Conferences which allows an intense, thorough discussion of all contributions. Each chapter provides a comprehensive overview of a materials class or a given subject. Many contributions could have been included in two or even three chapters and so, in order to give a better overview of the content, the reader will find a subject index, a material index and an author index in the back of the book.