eMaintenance: Essential Electronic Tools for Efficiency enables the reader to improve efficiency of operations, maintenance staff, infrastructure managers and system integrators, by accessing a real time computerized system from data to decision. In recent years, the exciting possibilities of eMaintenance have become increasingly recognized as a source of productivity improvement in industry. The seamless linking of systems and equipment to control centres for real time reconfiguring is improving efficiency, reliability, and sustainability in a variety of settings. The book provides an introduction to collecting and processing data from machinery, explains the methods of overcoming the challenges of data collection and processing, and presents tools for data driven condition monitoring and decision making. This is a groundbreaking handbook for those interested in the possibilities of running a plant as a smart asset. - Provides an introduction to collecting and processing data from machinery - Explains how to use sensor-based tools to increase efficiency of diagnosis, prognosis, and decision-making in maintenance - Describes methods for overcoming the challenges of data collection and processing
To be able to compete successfully both at national and international levels, production systems and equipment must perform at levels not even thinkable a decade ago. Requirements for increased product quality, reduced throughput time and enhanced operating effectiveness within a rapidly changing customer demand environment continue to demand a high maintenance performance. In some cases, maintenance is required to increase operational effectiveness and revenues and customer satisfaction while reducing capital, operating and support costs. This may be the largest challenge facing production enterprises these days. For this, maintenance strategy is required to be aligned with the production logistics and also to keep updated with the current best practices. Maintenance has become a multidisciplinary activity and one may come across situations in which maintenance is the responsibility of people whose training is not engineering. This handbook aims to assist at different levels of understanding whether the manager is an engineer, a production manager, an experienced maintenance practitioner or a beginner. Topics selected to be included in this handbook cover a wide range of issues in the area of maintenance management and engineering to cater for all those interested in maintenance whether practitioners or researchers. This handbook is divided into 6 parts and contains 26 chapters covering a wide range of topics related to maintenance management and engineering.
“The Maintenance Management Framework” describes and reviews the concept, process and framework of modern maintenance management of complex systems; concentrating specifically on modern modelling tools (deterministic and empirical) for maintenance planning and scheduling. It will be bought by engineers and professionals involved in maintenance management, maintenance engineering, operations management, quality, etc. as well as graduate students and researchers in this field.
If your company is adopting world class manufacturing techniques, you'll need new methods of performance measurement to control production variables. In practical terms, this book describes the new methods of performance measurement and how they are used in a changing environment. For manufacturing managers, as well as cost accountants, it provides the theoretical foundation for these innovative methods and is supported by extensive practical examples.
This unique reference utilizes techniques based on other management measurement systems, such as the balanced scorecard. It also presents a maturing of measurement technique for maintenance and asset maintenance and development techniques allowing companies to be competitive into the future.
This second edition of An Introduction to Predictive Maintenance helps plant, process, maintenance and reliability managers and engineers to develop and implement a comprehensive maintenance management program, providing proven strategies for regularly monitoring critical process equipment and systems, predicting machine failures, and scheduling maintenance accordingly. Since the publication of the first edition in 1990, there have been many changes in both technology and methodology, including financial implications, the role of a maintenance organization, predictive maintenance techniques, various analyses, and maintenance of the program itself. This revision includes a complete update of the applicable chapters from the first edition as well as six additional chapters outlining the most recent information available. Having already been implemented and maintained successfully in hundreds of manufacturing and process plants worldwide, the practices detailed in this second edition of An Introduction to Predictive Maintenance will save plants and corporations, as well as U.S. industry as a whole, billions of dollars by minimizing unexpected equipment failures and its resultant high maintenance cost while increasing productivity. - A comprehensive introduction to a system of monitoring critical industrial equipment - Optimize the availability of process machinery and greatly reduce the cost of maintenance - Provides the means to improve product quality, productivity and profitability of manufacturing and production plants
Optimizing Stormwater Treatment Practices: A Handbook of Assessment and Maintenance provides the information necessary for developing and operating an effective maintenance program for stormwater treatment. The book offers instructions on how to measure the level of performance of stormwater treatment practices directly and bases proposed maintenance schedules on actual performance and historical maintenance efforts and costs. The inspection methods, which are proven in the field and have been implemented successfully, are necessary as regulatory agencies are demanding evaluations of the performance of stormwater treatment practices. The authors have developed a three-tiered approach that offers readers a standard protocol for how to determine the effectiveness of stormwater treatment practices currently in place.
These proceedings include a collection of papers on a range of topics presented at the 12th World Congress on Engineering Asset Management (WCEAM) in Brisbane, 2 – 4 August 2017. Effective strategies are required for managing complex engineering assets such as built environments, infrastructure, plants, equipment, hardware systems and components. Following the release of the ISO 5500x set of standards in 2014, the 12th WCEAM addressed important issues covering all aspects of engineering asset management across various sectors including health. The topics discussed by the congress delegates are grouped into a number of tracks, including strategies for investment and divestment of assets, operations and maintenance of assets, assessment of assets’ health conditions, risk and vulnerability, technologies, and systems for management of assets, standards, education, training and certification.
ADVANCED TECHNIQUES FOR MAINTENANCE MODELING AND RELIABILITY ANALYSIS OF REPAIRABLE SYSTEMS This book covers advanced models and methodologies for reliability analysis of large, complex, and critical repairable systems that undergo imperfect maintenance actions in industries having MRO facilities and also covers real-life examples from the field of aviation. The content presented in this book is inspired by the existing limitations of the generalized renewal process (GRP) model and the problems confronted by the maintenance, repair, and operations (MRO) facilities in industries dealing with large and complex repairable systems. Through this book, the authors have attempted to equip the MRO facilities with more advanced scientific tools and techniques by addressing various limitations related to the reliability analysis of repairable systems. The book is dedicated to various imperfect maintenance-based virtual age models and methodologies to bridge various research gaps present in the available literature. A summary of deliverables is as follows: Presents the basic concepts of maintenance and provides a virtual age model that can accommodate all maintenance; Provides the basic concepts of censoring in repairable systems along with the concept of black box and failure modes. Also highlighted is how the proposed work will be useful for industries conducting failure modes and effect analysis (FMEA) and estimating the mean residual life (MRL) of repairable systems; Presents methodology that applies risk-based threshold on intensity function and provides a threshold to declare the system/component as high failure rate components (HFRCs); Identifying a system as HFRCs is an important task, but for an industry dealing with critical systems, preventing the system from being HFRC is more important, since the risk involved in such systems would be very high. Thus, the book presents a progressive maintenance policy (PMP) for repairable systems; Focusses on qualitative analysis of repair quality. Assuming repair quality as a subjective variable, the authors have presented various factors that affect the repair quality most and modeled their interdependency using Bayesian networks (BN). Audience Professional reliability engineers, reliability administrators, consultants, managers, and post-graduate students in engineering schools. The book belongs to any engineering, technical, and academic institution concerned with manufacturing, production, aviation, defense, and software industries.
Maintenance of equipment, machinery systems and allied infrastructure comprises the ways and means of optimizing the available resources of manpower, materials, tools and test equipment, within a set of constraints, to help achieve the targets of an organization by minimizing the downtimes. Whether the goal is to produce and sell a product at a profit or is simply to perform a mission in a cost-effective manner, the maintenance principles discussed in this text apply equally to all such types of organizations. In consonance with the growth of the industry and its modernization and the need to minimize the downtimes of machinery and equipment, the engineering education system has included maintenance engineering as a part of its curriculum. This second edition of the book continues to focus on the basics of this expanding subject, with a broad discussion of management aspects as well, for the benefit of the engineering students. It explains the concept of a maintenance system, the evaluation of its maintenance functions, maintenance planning and scheduling, the importance of motivation in maintenance, the use of computers in maintenance and the economic aspects of maintenance. This book also discusses the manpower planning and energy conservation in maintenance management. Presented in a readable style, the book brings together the numerous aspects of maintenance functions emphasizing the importance of this discipline in the engineering education. In this edition a new chapter titled, Advances in Maintenance (Chapter 21), has been included to widen the coverage of the book. Besides the students of engineering, especially those in streams of mechanical engineering and its related disciplines such as mining, industrial and production, this book will be useful to the practising engineers as well.