European Seismic Design Practice - Research and Application

European Seismic Design Practice - Research and Application

Author: A.S. Elnashai

Publisher: Routledge

Published: 2022-03-23

Total Pages: 683

ISBN-13: 1351449451

DOWNLOAD EBOOK

It is evident that European earthquake engineering research and design practice is assuming a role of increasing importance on the international scene. This is primarily due to two considerations; firstly the emergence of a core of European earthquake engineers who are co-operating on a long-term basis for the development of seismic design criteria specific to the European environment and secondly the identification of new problems in existing design practice in the USA and in Japan. It is in this context that European earthquake engineering activities and publications are eagerly observed and awaited by the international community. Includes a compact set of papers from leading research institutions, laboratories and companies in Europe, with a healthy number of contributions from elsewhere. It represents the European state-of-the-art and practice in earthquake testing, analysis & design of civil engineering works as well as strong-motion & hazard studies.


Seismic Design and Practice into the Next Century

Seismic Design and Practice into the Next Century

Author: Edmund Booth

Publisher: Routledge

Published: 2022-05-04

Total Pages: 548

ISBN-13: 1351417231

DOWNLOAD EBOOK

The papers, from 18 countries in Europe and elsewhere, contain discussions of quite radical innovations in material technology, design philosophy, experimental techniques and analytical approaches that will affect seismic design practice into the next century. Papers are organised into 9 sections: Ground motion and seismic hazard studies; Seismic design of foundations; Seismic design of steel, concrete and masonry buildings; Seismic design of offshore, nuclear and petrochemical installations; Seismic design of bridges, dock and power station structures; Repair and strengthening of bridges and buildings; Active and passive methods of seismic control; Dynamic testing methods; Seismic codes of practice. The proceedings will provide essential material for all those from both industrial and research organisations needing to keep in touch with the state-of-the-art in earthquake engineering and related earch sciences.


Seismic Design, Assessment and Retrofitting of Concrete Buildings

Seismic Design, Assessment and Retrofitting of Concrete Buildings

Author: Michael N. Fardis

Publisher: Springer Science & Business Media

Published: 2009-07-25

Total Pages: 757

ISBN-13: 1402098421

DOWNLOAD EBOOK

Reflecting the historic first European seismic code, this professional book focuses on seismic design, assessment and retrofitting of concrete buildings, with thorough reference to, and application of, EN-Eurocode 8. Following the publication of EN-Eurocode 8 in 2004-05, 30 countries are now introducing this European standard for seismic design, for application in parallel with existing national standards (till March 2010) and exclusively after that. Eurocode 8 is also expected to influence standards in countries outside Europe, or at the least, to be applied there for important facilities. Owing to the increasing awareness of the threat posed by existing buildings substandard and deficient buildings and the lack of national or international standards for assessment and retrofitting, its impact in that field is expected to be major. Written by the lead person in the development of the EN-Eurocode 8, the present handbook explains the principles and rationale of seismic design according to modern codes and provides thorough guidance for the conceptual seismic design of concrete buildings and their foundations. It examines the experimental behaviour of concrete members under cyclic loading and modelling for design and analysis purposes; it develops the essentials of linear or nonlinear seismic analysis for the purposes of design, assessment and retrofitting (especially using Eurocode 8); and gives detailed guidance for modelling concrete buildings at the member and at the system level. Moreover, readers gain access to overviews of provisions of Eurocode 8, plus an understanding for them on the basis of the simple models of the element behaviour presented in the book. Also examined are the modern trends in performance- and displacement-based seismic assessment of existing buildings, comparing the relevant provisions of Eurocode 8 with those of new US prestandards, and details of the most common and popular seismic retrofitting techniques for concrete buildings and guidance for retrofitting strategies at the system level. Comprehensive walk-through examples of detailed design elucidate the application of Eurocode 8 to common situations in practical design. Examples and case studies of seismic assessment and retrofitting of a few real buildings are also presented. From the reviews: "This is a massive book that has no equal in the published literature, as far as the reviewer knows. It is dense and comprehensive and leaves nothing to chance. It is certainly taxing on the reader and the potential user, but without it, use of Eurocode 8 will be that much more difficult. In short, this is a must-read book for researchers and practitioners in Europe, and of use to readers outside of Europe too. This book will remain an indispensable backup to Eurocode 8 and its existing Designers’ Guide to EN 1998-1 and EN 1998-5 (published in 2005), for many years to come. Congratulations to the author for a very well planned scope and contents, and for a flawless execution of the plan". AMR S. ELNASHAI "The book is an impressive source of information to understand the response of reinforced concrete buildings under seismic loads with the ultimate goal of presenting and explaining the state of the art of seismic design. Underlying the contents of the book is the in-depth knowledge of the author in this field and in particular his extremely important contribution to the development of the European Design Standard EN 1998 - Eurocode 8: Design of structures for earthquake resistance. However, although Eurocode 8 is at the core of the book, many comparisons are made to other design practices, namely from the US and from Japan, thus enriching the contents and interest of the book". EDUARDO C. CARVALHO


Assessing and Managing Earthquake Risk

Assessing and Managing Earthquake Risk

Author: Carlos Sousa Oliveira

Publisher: Springer Science & Business Media

Published: 2007-12-04

Total Pages: 561

ISBN-13: 1402036086

DOWNLOAD EBOOK

* Multidisciplinary approach of risk assessment and management, which can provide more efficient earthquake mitigation. * Transfer of Geo-scientific and engineering knowledge to Civil Protection and insurance agents * Approaches and common practices directly related to the preparation of earthquake emergency plans * Illustrated examples of actual applications, including web sites * Case-studies and information on relevant international projects


Elements of Earthquake Engineering and Structural Dynamics

Elements of Earthquake Engineering and Structural Dynamics

Author: André Filiatrault

Publisher: Presses inter Polytechnique

Published: 2013

Total Pages: 876

ISBN-13: 2553016492

DOWNLOAD EBOOK

"In order to reduce the seismic risk facing many densely populated regions worldwide, including Canada and the United States, modern earthquake engineering should be more widely applied. But current literature on earthquake engineering may be difficult to grasp for structural engineers who are untrained in seismic design. In addition no single resource addressed seismic design practices in both Canada and the United States until now. Elements of Earthquake Engineering and Structural Dynamics was written to fill the gap. It presents the key elements of earthquake engineering and structural dynamics at an introductory level and gives readers the basic knowledge they need to apply the seismic provisions contained in Canadian and American building codes."--Résumé de l'éditeur.


Seismic Design of Buildings to Eurocode 8

Seismic Design of Buildings to Eurocode 8

Author: Ahmed Elghazouli

Publisher: CRC Press

Published: 2016-12-19

Total Pages: 383

ISBN-13: 1498751601

DOWNLOAD EBOOK

This book focuses on the seismic design of building structures and their foundations to Eurocode 8. It covers the principles of seismic design in a clear but brief manner and then links these concepts to the provisions of Eurocode 8. It addresses the fundamental concepts related to seismic hazard, ground motion models, basic dynamics, seismic analysis, siting considerations, structural layout, and design philosophies, then leads to the specifics of Eurocode 8. Code procedures are applied with the aid of walk-through design examples which, where possible, deal with a common case study in most chapters. As well as an update throughout, this second edition incorporates three new and topical chapters dedicated to specific seismic design aspects of timber buildings and masonry structures, as well as base-isolation and supplemental damping. There is renewed interest in the use of sustainable timber buildings, and masonry structures still represent a popular choice in many areas. Moreover, seismic isolation and supplemental damping can offer low-damage solutions which are being increasingly considered in practice. The book stems primarily from practical short courses on seismic design which have been run over a number of years and through the development Eurocode 8. The contributors to this book are either specialist academics with significant consulting experience in seismic design, or leading practitioners who are actively engaged in large projects in seismic areas. This experience has provided significant insight into important areas in which guidance is required.


Earthquake Design Practice for Buildings

Earthquake Design Practice for Buildings

Author: Edmund D. Booth

Publisher: Thomas Telford

Published: 2006

Total Pages: 312

ISBN-13: 9780727729477

DOWNLOAD EBOOK

Talking about earthquake engineering, this second edition is intended for practising structural engineers, including those with little or no knowledge of the subject, and also for advanced engineering students. It discusses the provisions of seismic codes, particularly Eurocode 8.


Displacement-based Seismic Design of Structures

Displacement-based Seismic Design of Structures

Author: M. J. N. Priestley

Publisher: Iuss Press

Published: 2007

Total Pages: 750

ISBN-13:

DOWNLOAD EBOOK

Displacement-Based Seismic Design of Structures is a book primarily directed towards practicing structural designers who are interested in applying performance-based concepts to seismic design. Since much of the material presented in the book has not been published elsewhere, it will also be of considerable interest to researchers, and to graduate and upper-level undergraduate students of earthquake engineering who wish to develop a deeper understanding of how design can be used to control seismic response. The design philosophy is based on determination of the optimum structural strength to achieve a given performance limit state, related to a defined level of damage, under a specified level of seismic intensity. Emphasis is also placed on how this strength is distributed through the structure. This takes two forms: methods of structural analysis and capacity design. It is shown that equilibrium considerations frequently lead to a more advantageous distribution of strength than that resulting from stiffness considerations. Capacity design considerations have been re-examined, and new and more realistic design approaches are presented to insure against undesirable modes of inelastic deformation. The book considers a wide range of structural types, including separate chapters on frame buildings, wall buildings, dual wall/frame buildings, masonry buildings, timber structures, bridges, structures with isolation or added damping devices, and wharves. These are preceded by introductory chapters discussing conceptual problems with current force-based design, seismic input for displacement-based design, fundamentals of direct displacement-based design, and analytical tools appropriate for displacement-based design. The final two chapters adapt the principles of displacement-based seismic design to assessment of existing structures, and present the previously developed design information in the form of a draft building code. The text is illustrated by copious worked design examples (39 in all), and analysis aids are provided in the form of a CD containing three computer programs covering moment-curvature analysis (Cumbia), linear-element-based inelastic time-history analysis (Ruaumoko), and a general fibre-element dynamic analysis program (SeismoStruct). The design procedure developed in this book is based on a secant-stiffness (rather than initial stiffness) representation of structural response, using a level of damping equivalent to the combined effects of elastic and hysteretic damping. The approach has been fully verified by extensive inelastic time history analyses, which are extensively reported in the text. The design method is extremely simple to apply, and very successful in providing dependable and predictable seismic response. Authors Bios M.J.N.Priestley Nigel Priestley is Professor Emeritus of the University of California San Diego, and co-Director of the Centre of Research and Graduate Studies in Earthquake Engineering and Engineering Seismology (ROSE School), Istituto Universitario di Studi Superiori (IUSS), Pavia, Italy. He has published more than 450 papers, mainly on earthquake engineering, and received numerous awards for his research. He holds honorary doctorates from ETH, Zurich, and Cujo, Argentina. He is co-author of two previous seismic design books “Seismic Design of Concrete and Masonry Buildings” and “Seismic Design and Retrofit of Bridges”, that are considered standard texts on the subjects. G.M.Calvi Michele Calvi is Professor of the University of Pavia and Director of the Centre of Research and Graduate Studies in Earthquake Engineering and Engineering Seismology (ROSE School), Istituto Universitario di Studi Superiori (IUSS) of Pavia. He has published more than 200 papers and is co-author of the book “Seismic Design and Retrofit of Bridges”, that is considered a standard text on the subject, has been involved in important construction projects worldwide, such as the Rion Bridge in Greece and the upgrading of the Bolu Viaduct in Turkey, and is coordinating several international research projects. M.J.Kowalsky Mervyn Kowalsky is Associate Professor of Structural Engineering in the Department of Civil, Construction, and Environmental Engineering at North Carolina State University and a member of the faculty of the ROSE School. His research, which has largely focused on the seismic behaviour of structures, has been supported by the National Science Foundation, the North Carolina and Alaska Departments of Transportation, and several industrial organizations. He is a registered Professional Engineer in North Carolina and an active member of several national and international committees on Performance-Based Seismic Design.