This introduction to Euclidean geometry emphasizes transformations, particularly isometries and similarities. Suitable for undergraduate courses, it includes numerous examples, many with detailed answers. 1972 edition.
Transformation Geometry: An Introduction to Symmetry offers a modern approach to Euclidean Geometry. This study of the automorphism groups of the plane and space gives the classical concrete examples that serve as a meaningful preparation for the standard undergraduate course in abstract algebra. The detailed development of the isometries of the plane is based on only the most elementary geometry and is appropriate for graduate courses for secondary teachers.
This classic text explores the geometry of the triangle and the circle, concentrating on extensions of Euclidean theory, and examining in detail many relatively recent theorems. 1929 edition.
Based on classical principles, this book is intended for a second course in Euclidean geometry and can be used as a refresher. Each chapter covers a different aspect of Euclidean geometry, lists relevant theorems and corollaries, and states and proves many propositions. Includes more than 200 problems, hints, and solutions. 1968 edition.
Features the classical themes of geometry with plentiful applications in mathematics, education, engineering, and science Accessible and reader-friendly, Classical Geometry: Euclidean, Transformational, Inversive, and Projective introduces readers to a valuable discipline that is crucial to understanding bothspatial relationships and logical reasoning. Focusing on the development of geometric intuitionwhile avoiding the axiomatic method, a problem solving approach is encouraged throughout. The book is strategically divided into three sections: Part One focuses on Euclidean geometry, which provides the foundation for the rest of the material covered throughout; Part Two discusses Euclidean transformations of the plane, as well as groups and their use in studying transformations; and Part Three covers inversive and projective geometry as natural extensions of Euclidean geometry. In addition to featuring real-world applications throughout, Classical Geometry: Euclidean, Transformational, Inversive, and Projective includes: Multiple entertaining and elegant geometry problems at the end of each section for every level of study Fully worked examples with exercises to facilitate comprehension and retention Unique topical coverage, such as the theorems of Ceva and Menalaus and their applications An approach that prepares readers for the art of logical reasoning, modeling, and proofs The book is an excellent textbook for courses in introductory geometry, elementary geometry, modern geometry, and history of mathematics at the undergraduate level for mathematics majors, as well as for engineering and secondary education majors. The book is also ideal for anyone who would like to learn the various applications of elementary geometry.
Euclidean plane geometry is one of the oldest and most beautiful topics in mathematics. Instead of carefully building geometries from axiom sets, this book uses a wealth of methods to solve problems in Euclidean geometry. Many of these methods arose where existing techniques proved inadequate. In several cases, the new ideas used in solving specific problems later developed into independent areas of mathematics. This book is primarily a geometry textbook, but studying geometry in this way will also develop students' appreciation of the subject and of mathematics as a whole. For instance, despite the fact that the analytic method has been part of mathematics for four centuries, it is rarely a tool a student considers using when faced with a geometry problem. Methods for Euclidean Geometry explores the application of a broad range of mathematical topics to the solution of Euclidean problems.
This textbook teaches the transformations of plane Euclidean geometry through problems, offering a transformation-based perspective on problems that have appeared in recent years at mathematics competitions around the globe, as well as on some classical examples and theorems. It is based on the combined teaching experience of the authors (coaches of several Mathematical Olympiad teams in Brazil, Romania and the USA) and presents comprehensive theoretical discussions of isometries, homotheties and spiral similarities, and inversions, all illustrated by examples and followed by myriad problems left for the reader to solve. These problems were carefully selected and arranged to introduce students to the topics by gradually moving from basic to expert level. Most of them have appeared in competitions such as Mathematical Olympiads or in mathematical journals aimed at an audience interested in mathematics competitions, while some are fundamental facts of mathematics discussed in the framework of geometric transformations. The book offers a global view of the geometric content of today's mathematics competitions, bringing many new methods and ideas to the attention of the public. Talented high school and middle school students seeking to improve their problem-solving skills can benefit from this book, as well as high school and college instructors who want to add nonstandard questions to their courses. People who enjoy solving elementary math problems as a hobby will also enjoy this work.
This is a challenging problem-solving book in Euclidean geometry, assuming nothing of the reader other than a good deal of courage. Topics covered included cyclic quadrilaterals, power of a point, homothety, triangle centers; along the way the reader will meet such classical gems as the nine-point circle, the Simson line, the symmedian and the mixtilinear incircle, as well as the theorems of Euler, Ceva, Menelaus, and Pascal. Another part is dedicated to the use of complex numbers and barycentric coordinates, granting the reader both a traditional and computational viewpoint of the material. The final part consists of some more advanced topics, such as inversion in the plane, the cross ratio and projective transformations, and the theory of the complete quadrilateral. The exposition is friendly and relaxed, and accompanied by over 300 beautifully drawn figures. The emphasis of this book is placed squarely on the problems. Each chapter contains carefully chosen worked examples, which explain not only the solutions to the problems but also describe in close detail how one would invent the solution to begin with. The text contains a selection of 300 practice problems of varying difficulty from contests around the world, with extensive hints and selected solutions. This book is especially suitable for students preparing for national or international mathematical olympiads or for teachers looking for a text for an honor class.