Euclid presents the essential of mathematics in a manner which has set a high standard for more than 2000 years. This book, an explanation of the nature of mathematics from its most important early source, is for all lovers of mathematics with a solid background in high school geometry, whether they be students or university professors.
A sweeping cultural history of one of the most influential mathematical books ever written Euclid's Elements of Geometry is one of the fountainheads of mathematics—and of culture. Written around 300 BCE, it has traveled widely across the centuries, generating countless new ideas and inspiring such figures as Isaac Newton, Bertrand Russell, Abraham Lincoln, and Albert Einstein. Encounters with Euclid tells the story of this incomparable mathematical masterpiece, taking readers from its origins in the ancient world to its continuing influence today. In this lively and informative book, Benjamin Wardhaugh explains how Euclid’s text journeyed from antiquity to the Renaissance, introducing some of the many readers, copyists, and editors who left their mark on the Elements before handing it on. He shows how some read the book as a work of philosophy, while others viewed it as a practical guide to life. He examines the many different contexts in which Euclid's book and his geometry were put to use, from the Neoplatonic school at Athens and the artisans' studios of medieval Baghdad to the Jesuit mission in China and the workshops of Restoration London. Wardhaugh shows how the Elements inspired ideas in theology, art, and music, and how the book has acquired new relevance to the strange geometries of dark matter and curved space. Encounters with Euclid traces the life and afterlives of one of the most remarkable works of mathematics ever written, revealing its lasting role in the timeless search for order and reason in an unruly world.
Euclid, a Greek mathematician, flourished around 300 BCE. It was he who shaped geometry into what it is today. As a result, he became known as the father of geometry. Euclid founded his own school in Alexandria, Egypt, and gained a reputation as an exceptional geometry teacher. The Elements, his thirteen-volume treatise on mathematics and geometry, was considered to be one of the most influential mathematical works in history. Readers consider some of the definitions and postulates from this great work. They also learn about ancient Greek civilization and the renowned Greek mathematicians and philosophers who influenced Euclid's thinking.
"A biography of ancient Greek mathematician Euclid, known as the father of geometry and author of the mathematics textbook Elements"--Provided by publisher.
EUCLID'S ELEMENTS OF GEOMETRY, in Greek and English. The Greek text of J.L. Heiberg (1883-1885), edited, and provided with a modern English translation, by Richard Fitzpatrick.[Description from Wikipedia: ] The Elements (Ancient Greek: Στοιχεῖον Stoikheîon) is a mathematical treatise consisting of 13 books (all included in this volume) attributed to the ancient Greek mathematician Euclid in Alexandria, Ptolemaic Egypt c. 300 BC. It is a collection of definitions, postulates, propositions (theorems and constructions), and mathematical proofs of the propositions. The books cover plane and solid Euclidean geometry, elementary number theory, and incommensurable lines. Elements is the oldest extant large-scale deductive treatment of mathematics. It has proven instrumental in the development of logic and modern science, and its logical rigor was not surpassed until the 19th century.
Geometry defines the world around us, helping us make sense of everything from architecture to military science to fashion. And for over two thousand years, geometry has been equated with Euclid's Elements, arguably the most influential book in the history of mathematics In The King of Infinite Space, renowned mathematics writer David Berlinski provides a concise homage to this elusive mathematician and his staggering achievements. Berlinski shows that, for centuries, scientists and thinkers from Copernicus to Newton to Einstein have relied on Euclid's axiomatic system, a method of proof still taught in classrooms around the world. Euclid's use of elemental logic -- and the mathematical statements he and others built from it -- have dramatically expanded the frontiers of human knowledge. The King of Infinite Space presents a rich, accessible treatment of Euclid and his beautifully simple geometric system, which continues to shape the way we see the world.
A survey of Euclid's Elements, this text provides an understanding of the classical Greek conception of mathematics and its similarities to modern views as well as its differences. It focuses on philosophical, foundational, and logical questions -- rather than focusing strictly on historical and mathematical issues -- and features several helpful appendixes.
Assisted by Scott Olsen ( Central Florida Community College, USA ). This volume is a result of the author's four decades of research in the field of Fibonacci numbers and the Golden Section and their applications. It provides a broad introduction to the fascinating and beautiful subject of the OC Mathematics of Harmony, OCO a new interdisciplinary direction of modern science. This direction has its origins in OC The ElementsOCO of Euclid and has many unexpected applications in contemporary mathematics (a new approach to a history of mathematics, the generalized Fibonacci numbers and the generalized golden proportions, the OC goldenOCO algebraic equations, the generalized Binet formulas, Fibonacci and OC goldenOCO matrices), theoretical physics (new hyperbolic models of Nature) and computer science (algorithmic measurement theory, number systems with irrational radices, Fibonacci computers, ternary mirror-symmetrical arithmetic, a new theory of coding and cryptography based on the Fibonacci and OC goldenOCO matrices). The book is intended for a wide audience including mathematics teachers of high schools, students of colleges and universities and scientists in the field of mathematics, theoretical physics and computer science. The book may be used as an advanced textbook by graduate students and even ambitious undergraduates in mathematics and computer science. Sample Chapter(s). Introduction (503k). Chapter 1: The Golden Section (2,459k). Contents: Classical Golden Mean, Fibonacci Numbers, and Platonic Solids: The Golden Section; Fibonacci and Lucas Numbers; Regular Polyhedrons; Mathematics of Harmony: Generalizations of Fibonacci Numbers and the Golden Mean; Hyperbolic Fibonacci and Lucas Functions; Fibonacci and Golden Matrices; Application in Computer Science: Algorithmic Measurement Theory; Fibonacci Computers; Codes of the Golden Proportion; Ternary Mirror-Symmetrical Arithmetic; A New Coding Theory Based on a Matrix Approach. Readership: Researchers, teachers and students in mathematics (especially those interested in the Golden Section and Fibonacci numbers), theoretical physics and computer science."