Estimation of Stochastic Processes with Stationary Increments and Cointegrated Sequences

Estimation of Stochastic Processes with Stationary Increments and Cointegrated Sequences

Author: Maksym Luz

Publisher: John Wiley & Sons

Published: 2019-12-12

Total Pages: 308

ISBN-13: 1786305038

DOWNLOAD EBOOK

Estimation of Stochastic Processes is intended for researchers in the field of econometrics, financial mathematics, statistics or signal processing. This book gives a deep understanding of spectral theory and estimation techniques for stochastic processes with stationary increments. It focuses on the estimation of functionals of unobserved values for stochastic processes with stationary increments, including ARIMA processes, seasonal time series and a class of cointegrated sequences. Furthermore, this book presents solutions to extrapolation (forecast), interpolation (missed values estimation) and filtering (smoothing) problems based on observations with and without noise, in discrete and continuous time domains. Extending the classical approach applied when the spectral densities of the processes are known, the minimax method of estimation is developed for a case where the spectral information is incomplete and the relations that determine the least favorable spectral densities for the optimal estimations are found.


Non-Stationary Stochastic Processes Estimation

Non-Stationary Stochastic Processes Estimation

Author: Maksym Luz

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2024-05-20

Total Pages: 381

ISBN-13: 311132625X

DOWNLOAD EBOOK

The problem of forecasting future values of economic and physical processes, the problem of restoring lost information, cleaning signals or other data observations from noise, is magnified in an information-laden word. Methods of stochastic processes estimation depend on two main factors. The first factor is construction of a model of the process being investigated. The second factor is the available information about the structure of the process under consideration. In this book, we propose results of the investigation of the problem of mean square optimal estimation (extrapolation, interpolation, and filtering) of linear functionals depending on unobserved values of stochastic sequences and processes with periodically stationary and long memory multiplicative seasonal increments. Formulas for calculating the mean square errors and the spectral characteristics of the optimal estimates of the functionals are derived in the case of spectral certainty, where spectral structure of the considered sequences and processes are exactly known. In the case where spectral densities of the sequences and processes are not known exactly while some sets of admissible spectral densities are given, we apply the minimax-robust method of estimation.


Estimation of Stochastic Processes with Stationary Increments and Cointegrated Sequences

Estimation of Stochastic Processes with Stationary Increments and Cointegrated Sequences

Author: Maksym Luz

Publisher: John Wiley & Sons

Published: 2019-09-20

Total Pages: 314

ISBN-13: 1119663520

DOWNLOAD EBOOK

Estimation of Stochastic Processes is intended for researchers in the field of econometrics, financial mathematics, statistics or signal processing. This book gives a deep understanding of spectral theory and estimation techniques for stochastic processes with stationary increments. It focuses on the estimation of functionals of unobserved values for stochastic processes with stationary increments, including ARIMA processes, seasonal time series and a class of cointegrated sequences. Furthermore, this book presents solutions to extrapolation (forecast), interpolation (missed values estimation) and filtering (smoothing) problems based on observations with and without noise, in discrete and continuous time domains. Extending the classical approach applied when the spectral densities of the processes are known, the minimax method of estimation is developed for a case where the spectral information is incomplete and the relations that determine the least favorable spectral densities for the optimal estimations are found.


Non-Stationary Stochastic Processes Estimation

Non-Stationary Stochastic Processes Estimation

Author: Maksym Luz

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2024-05-20

Total Pages: 310

ISBN-13: 3111325628

DOWNLOAD EBOOK

The problem of forecasting future values of economic and physical processes, the problem of restoring lost information, cleaning signals or other data observations from noise, is magnified in an information-laden word. Methods of stochastic processes estimation depend on two main factors. The first factor is construction of a model of the process being investigated. The second factor is the available information about the structure of the process under consideration. In this book, we propose results of the investigation of the problem of mean square optimal estimation (extrapolation, interpolation, and filtering) of linear functionals depending on unobserved values of stochastic sequences and processes with periodically stationary and long memory multiplicative seasonal increments. Formulas for calculating the mean square errors and the spectral characteristics of the optimal estimates of the functionals are derived in the case of spectral certainty, where spectral structure of the considered sequences and processes are exactly known. In the case where spectral densities of the sequences and processes are not known exactly while some sets of admissible spectral densities are given, we apply the minimax-robust method of estimation.


Markov Chains

Markov Chains

Author: Bruno Sericola

Publisher: John Wiley & Sons

Published: 2013-08-05

Total Pages: 306

ISBN-13: 1118731530

DOWNLOAD EBOOK

Markov chains are a fundamental class of stochastic processes. They are widely used to solve problems in a large number of domains such as operational research, computer science, communication networks and manufacturing systems. The success of Markov chains is mainly due to their simplicity of use, the large number of available theoretical results and the quality of algorithms developed for the numerical evaluation of many metrics of interest. The author presents the theory of both discrete-time and continuous-time homogeneous Markov chains. He carefully examines the explosion phenomenon, the Kolmogorov equations, the convergence to equilibrium and the passage time distributions to a state and to a subset of states. These results are applied to birth-and-death processes. He then proposes a detailed study of the uniformization technique by means of Banach algebra. This technique is used for the transient analysis of several queuing systems. Contents 1. Discrete-Time Markov Chains 2. Continuous-Time Markov Chains 3. Birth-and-Death Processes 4. Uniformization 5. Queues About the Authors Bruno Sericola is a Senior Research Scientist at Inria Rennes – Bretagne Atlantique in France. His main research activity is in performance evaluation of computer and communication systems, dependability analysis of fault-tolerant systems and stochastic models.


Mathematical Modelling

Mathematical Modelling

Author: Seyed M. Moghadas

Publisher: John Wiley & Sons

Published: 2018-07-24

Total Pages: 238

ISBN-13: 1119483999

DOWNLOAD EBOOK

An important resource that provides an overview of mathematical modelling Mathematical Modelling offers a comprehensive guide to both analytical and computational aspects of mathematical modelling that encompasses a wide range of subjects. The authors provide an overview of the basic concepts of mathematical modelling and review the relevant topics from differential equations and linear algebra. The text explores the various types of mathematical models, and includes a range of examples that help to describe a variety of techniques from dynamical systems theory. The book’s analytical techniques examine compartmental modelling, stability, bifurcation, discretization, and fixed-point analysis. The theoretical analyses involve systems of ordinary differential equations for deterministic models. The text also contains information on concepts of probability and random variables as the requirements of stochastic processes. In addition, the authors describe algorithms for computer simulation of both deterministic and stochastic models, and review a number of well-known models that illustrate their application in different fields of study. This important resource: Includes a broad spectrum of models that fall under deterministic and stochastic classes and discusses them in both continuous and discrete forms Demonstrates the wide spectrum of problems that can be addressed through mathematical modelling based on fundamental tools and techniques in applied mathematics and statistics Contains an appendix that reveals the overall approach that can be taken to solve exercises in different chapters Offers many exercises to help better understand the modelling process Written for graduate students in applied mathematics, instructors, and professionals using mathematical modelling for research and training purposes, Mathematical Modelling: A Graduate Textbook covers a broad range of analytical and computational aspects of mathematical modelling.