This text combines the topics generally found in main-stream elementary statistics books with the essentials of the underlying theory. The book begins with an axiomatic treatment of probability followed by chapters on discrete and continuous random variables and their associated distributions. It then introduces basic statistical concepts including summarizing data and interval parameter estimation, stressing the connection between probability and statistics. Final chapters introduce hypothesis testing, regression, and non-parametric techniques. All chapters provide a balance between conceptual understanding and theoretical understanding of the topics at hand.
Knowledge updating is a never-ending process and so should be the revision of an effective textbook. The book originally written fifty years ago has, during the intervening period, been revised and reprinted several times. The authors have, however, been thinking, for the last few years that the book needed not only a thorough revision but rather a substantial rewriting. They now take great pleasure in presenting to the readers the twelfth, thoroughly revised and enlarged, Golden Jubilee edition of the book. The subject-matter in the entire book has been re-written in the light of numerous criticisms and suggestions received from the users of the earlier editions in India and abroad. The basis of this revision has been the emergence of new literature on the subject, the constructive feedback from students and teaching fraternity, as well as those changes that have been made in the syllabi and/or the pattern of examination papers of numerous universities. Knowledge updating is a never-ending process and so should be the revision of an effective textbook. The book originally written fifty years ago has, during the intervening period, been revised and reprinted several times. The authors have, however, been thinking, for the last few years that the book needed not only a thorough revision but rather a substantial rewriting. They now take great pleasure in presenting to the readers the twelfth, thoroughly revised and enlarged, Golden Jubilee edition of the book. The subject-matter in the entire book has been re-written in the light of numerous criticisms and suggestions received from the users of the earlier editions in India and abroad. The basis of this revision has been the emergence of new literature on the subject, the constructive feedback from students and teaching fraternity, as well as those changes that have been made in the syllabi and/or the pattern of examination papers of numerous universities. Knowledge updating is a never-ending process and so should be the revision of an effective textbook. The book originally written fifty years ago has, during the intervening period, been revised and reprinted several times. The authors have, however, been thinking, for the last few years that the book needed not only a thorough revision but rather a substantial rewriting. They now take great pleasure in presenting to the readers the twelfth, thoroughly revised and enlarged, Golden Jubilee edition of the book. The subject-matter in the entire book has been re-written in the light of numerous criticisms and suggestions received from the users of the earlier editions in India and abroad. The basis of this revision has been the emergence of new literature on the subject, the constructive feedback from students and teaching fraternity, as well as those changes that have been made in the syllabi and/or the pattern of examination papers of numerous universities. Some prominent additions are given below: 1. Variance of Degenerate Random Variable 2. Approximate Expression for Expectation and Variance 3. Lyapounov’s Inequality 4. Holder’s Inequality 5. Minkowski’s Inequality 6. Double Expectation Rule or Double-E Rule and many others
This book presents basic aspects for a theory of statistics with fuzzy data, together with a set of practical applications. Theories of fuzzy logic and of random closed sets are used as basic ingredients in building statistical concepts and procedures in the context of imprecise data, including coarse data analysis. The book aims at motivating statisticians to examine fuzzy statistics to enlarge the domain of applicability of statistics in general.
Presents a unified approach to parametric estimation, confidence intervals, hypothesis testing, and statistical modeling, which are uniquely based on the likelihood function This book addresses mathematical statistics for upper-undergraduates and first year graduate students, tying chapters on estimation, confidence intervals, hypothesis testing, and statistical models together to present a unifying focus on the likelihood function. It also emphasizes the important ideas in statistical modeling, such as sufficiency, exponential family distributions, and large sample properties. Mathematical Statistics: An Introduction to Likelihood Based Inference makes advanced topics accessible and understandable and covers many topics in more depth than typical mathematical statistics textbooks. It includes numerous examples, case studies, a large number of exercises ranging from drill and skill to extremely difficult problems, and many of the important theorems of mathematical statistics along with their proofs. In addition to the connected chapters mentioned above, Mathematical Statistics covers likelihood-based estimation, with emphasis on multidimensional parameter spaces and range dependent support. It also includes a chapter on confidence intervals, which contains examples of exact confidence intervals along with the standard large sample confidence intervals based on the MLE's and bootstrap confidence intervals. There’s also a chapter on parametric statistical models featuring sections on non-iid observations, linear regression, logistic regression, Poisson regression, and linear models. Prepares students with the tools needed to be successful in their future work in statistics data science Includes practical case studies including real-life data collected from Yellowstone National Park, the Donner party, and the Titanic voyage Emphasizes the important ideas to statistical modeling, such as sufficiency, exponential family distributions, and large sample properties Includes sections on Bayesian estimation and credible intervals Features examples, problems, and solutions Mathematical Statistics: An Introduction to Likelihood Based Inference is an ideal textbook for upper-undergraduate and graduate courses in probability, mathematical statistics, and/or statistical inference.
"More than ever before, modern social scientists require a basic level of mathematical literacy, yet many students receive only limited mathematical training prior to beginning their research careers. This textbook addresses this dilemma by offering a comprehensive, unified introduction to the essential mathematics of social science. Throughout the book the presentation builds from first principles and eschews unnecessary complexity. Most importantly, the discussion is thoroughly and consistently anchored in real social science applications, with more than 80 research-based illustrations woven into the text and featured in end-of-chapter exercises. Students and researchers alike will find this first-of-its-kind volume to be an invaluable resource."--BOOK JACKET.
Statistic: A Concise Mathematical Introduction for Students and Scientists offers a one academic term text that prepares the student to broaden their skills in statistics, probability and inference, prior to selecting their follow-on courses in their chosen fields, whether it be engineering, computer science, programming, data sciences, business or economics. The book places focus early on continuous measurements, as well as discrete random variables. By invoking simple and intuitive models and geometric probability, discrete and continuous experiments and probabilities are discussed throughout the book in a natural way. Classical probability, random variables, and inference are discussed, as well as material on understanding data and topics of special interest. Topics discussed include: • Classical equally likely outcomes • Variety of models of discrete and continuous probability laws • Likelihood function and ratio • Inference • Bayesian statistics With the growth in the volume of data generated in many disciplines that is enabling the growth in data science, companies now demand statistically literate scientists and this textbook is the answer, suited for undergraduates studying science or engineering, be it computer science, economics, life sciences, environmental, business, amongst many others. Basic knowledge of bivariate calculus, R language, Matematica and JMP is useful, however there is an accompanying website including sample R and Mathematica code to help instructors and students.
Fundamentals of Mathematical Statistics is meant for a standard one-semester advanced undergraduate or graduate-level course in Mathematical Statistics. It covers all the key topics—statistical models, linear normal models, exponential families, estimation, asymptotics of maximum likelihood, significance testing, and models for tables of counts. It assumes a good background in mathematical analysis, linear algebra, and probability but includes an appendix with basic results from these areas. Throughout the text, there are numerous examples and graduated exercises that illustrate the topics covered, rendering the book suitable for teaching or self-study. Features A concise yet rigorous introduction to a one-semester course in Mathematical Statistics Covers all the key topics Assumes a solid background in Mathematics and Probability Numerous examples illustrate the topics Many exercises enhance understanding of the material and enable course use This textbook will be a perfect fit for an advanced course in Mathematical Statistics or Statistical Theory. The concise and lucid approach means it could also serve as a good alternative, or supplement, to existing texts.
Exploring Mathematics: Investigations with Functions is intended for a one- or two-term course in mathematics for college students majoring in the social sciences, English, history, music, art, education, or any of the other majors within liberal arts. The mathematics course of this scope, with an algebra prerequsite, is a popular selection for liberal arts students. This 9-chapter textbook offers modern applications of mathematics in the liberal arts as well as aesthetic features of this rich facet of history and ongoing advancement of human society. With a central theme around the use of the concept of functions, and the inclusion of unique topics and chapters, Exploring Mathematics enables students to explore the next level of mathematics. It attempts to answer the questions, "How does mathematics help us to better our society and understand the world around us?" and "What are some of the unifying ideas of mathematics?" The central theme helps to impress upon the student the feeling that mathematics is more than a disconnected potpourri of rules and tricks. Although it would be inappropriate to force a functional connection in every single section, the theme is used whenever possible to provide conceptual bridges between chapters. Developing the concept of a function augments the presentation of many topics in every chapter. The Text's Objectives: The author chose the topics based on meeting the specific NCTM curriculum standards to: 1. Strengthen estimation and computational skills. 2. Utilize algebraic concepts. 3. Emphasize problem-solving and reasoning. 4. Emphasize pattern and relationship recognition. 5. Highlight importance of units in measurement. 6. Highlight importance of the notion of a mathematical function. 7. Display mathematical connections to other disciplines.