Essentials of Atmospheric and Oceanic Dynamics

Essentials of Atmospheric and Oceanic Dynamics

Author: Geoffrey K. Vallis

Publisher: Cambridge University Press

Published: 2019-01-24

Total Pages: 367

ISBN-13: 1107692792

DOWNLOAD EBOOK

A concise introduction to atmosphere-ocean dynamics at the intermediate-advanced undergraduate level, taking the reader from basic dynamics to cutting-edge topics.


Atmospheric and Oceanic Fluid Dynamics

Atmospheric and Oceanic Fluid Dynamics

Author: Geoffrey K. Vallis

Publisher: Cambridge University Press

Published: 2006-11-06

Total Pages: 772

ISBN-13: 1139459961

DOWNLOAD EBOOK

Fluid dynamics is fundamental to our understanding of the atmosphere and oceans. Although many of the same principles of fluid dynamics apply to both the atmosphere and oceans, textbooks tend to concentrate on the atmosphere, the ocean, or the theory of geophysical fluid dynamics (GFD). This textbook provides a comprehensive unified treatment of atmospheric and oceanic fluid dynamics. The book introduces the fundamentals of geophysical fluid dynamics, including rotation and stratification, vorticity and potential vorticity, and scaling and approximations. It discusses baroclinic and barotropic instabilities, wave-mean flow interactions and turbulence, and the general circulation of the atmosphere and ocean. Student problems and exercises are included at the end of each chapter. Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation will be an invaluable graduate textbook on advanced courses in GFD, meteorology, atmospheric science and oceanography, and an excellent review volume for researchers. Additional resources are available at www.cambridge.org/9780521849692.


Mid-Latitude Atmospheric Dynamics

Mid-Latitude Atmospheric Dynamics

Author: Jonathan E. Martin

Publisher: John Wiley & Sons

Published: 2013-05-23

Total Pages: 345

ISBN-13: 1118687892

DOWNLOAD EBOOK

This exciting text provides a mathematically rigorous yet accessible textbook that is primarily aimed at atmospheric science majors. Its accessibility is due to the texts emphasis on conceptual understanding. The first five chapters constitute a companion text to introductory courses covering the dynamics of the mid-latitude atmosphere. The final four chapters constitute a more advanced course, and provide insights into the diagnostic power of the quasi-geostrophic approximation of the equations outlined in the previous chapters, the meso-scale dynamics of thefrontal zone, the alternative PV perspective for cyclone interpretation, and the dynamics of the life-cycle of mid-latitude cyclones. Written in a clear and accessible style Features real weather examples and global case studies Each chapter sets out clear learning objectives and tests students’ knowledge with concluding questions and answers A Solutions Manual is also available for this textbook on the Instructor Companion Site www.wileyeurope.com/college/martin. “...a student-friendly yet rigorous textbook that accomplishes what no other textbook has done before... I highly recommend this textbook. For instructors, this is a great book if they don’t have their own class notes – one can teach straight from the book. And for students, this is a great book if they don’t take good class notes – one can learn straight from the book. This is a rare attribute of advanced textbooks.” Bulletin of the American Meteorological Society (BAMS), 2008


An Introduction to Dynamic Meteorology

An Introduction to Dynamic Meteorology

Author: James R. Holton

Publisher: Academic Press

Published: 1979

Total Pages: 409

ISBN-13: 0122543602

DOWNLOAD EBOOK

For advanced undergraduate and beginning graduate students in atmospheric, oceanic, and climate science, Atmosphere, Ocean and Climate Dynamics is an introductory textbook on the circulations of the atmosphere and ocean and their interaction, with an emphasis on global scales. It will give students a good grasp of what the atmosphere and oceans look like on the large-scale and why they look that way. The role of the oceans in climate and paleoclimate is also discussed. The combination of observations, theory and accompanying illustrative laboratory experiments sets this text apart by making it accessible to students with no prior training in meteorology or oceanography. * Written at a mathematical level that is appealing for undergraduates and beginning graduate students * Provides a useful educational tool through a combination of observations and laboratory demonstrations which can be viewed over the web * Contains instructions on how to reproduce the simple but informative laboratory experiments * Includes copious problems (with sample answers) to help students learn the material.


Geophysical Fluid Dynamics

Geophysical Fluid Dynamics

Author: Joseph Pedlosky

Publisher: Springer Science & Business Media

Published: 2013-12-01

Total Pages: 723

ISBN-13: 1461246504

DOWNLOAD EBOOK

This second edition of the widely acclaimed Geophysical Fluid Dynamics by Joseph Pedlosky offers the reader a high-level, unified treatment of the theory of the dynamics of large-scale motions of the oceans and atmosphere. Revised and updated, it includes expanded discussions of * the fundamentals of geostrophic turbulence * the theory of wave-mean flow interaction * thermocline theory * finite amplitude barocline instability.


Ocean Dynamics and the Carbon Cycle

Ocean Dynamics and the Carbon Cycle

Author: Richard G. Williams

Publisher: Cambridge University Press

Published: 2011-07-14

Total Pages: 433

ISBN-13: 1139496778

DOWNLOAD EBOOK

This textbook for advanced undergraduate and graduate students presents a multidisciplinary approach to understanding ocean circulation and how it drives and controls marine biogeochemistry and biological productivity at a global scale. Background chapters on ocean physics, chemistry and biology provide students with the tools to examine the range of large-scale physical and dynamic phenomena that control the ocean carbon cycle and its interaction with the atmosphere. Throughout the text observational data is integrated with basic physical theory to address cutting-edge research questions in ocean biogeochemistry. Simple theoretical models, data plots and schematic illustrations summarise key results and connect the physical theory to real observations. Advanced mathematics is provided in boxes and appendices where it can be drawn on to assist with the worked examples and homework exercises available online. Further reading lists for each chapter and a comprehensive glossary provide students and instructors with a complete learning package.


Turbulence in the Atmosphere

Turbulence in the Atmosphere

Author: John C. Wyngaard

Publisher: Cambridge University Press

Published: 2010-01-28

Total Pages: 407

ISBN-13: 1139485520

DOWNLOAD EBOOK

Based on his over forty years of research and teaching, John C. Wyngaard's textbook is an excellent up-to-date introduction to turbulence in the atmosphere and in engineering flows for advanced students, and a reference work for researchers in the atmospheric sciences. Part I introduces the concepts and equations of turbulence. It includes a rigorous introduction to the principal types of numerical modeling of turbulent flows. Part II describes turbulence in the atmospheric boundary layer. Part III covers the foundations of the statistical representation of turbulence and includes illustrative examples of stochastic problems that can be solved analytically. The book treats atmospheric and engineering turbulence in a unified way, gives clear explanation of the fundamental concepts of modeling turbulence, and has an up-to-date treatment of turbulence in the atmospheric boundary layer. Student exercises are included at the ends of chapters, and worked solutions are available online for use by course instructors.


Principles of Planetary Climate

Principles of Planetary Climate

Author: Raymond T. Pierrehumbert

Publisher: Cambridge University Press

Published: 2010-12-02

Total Pages: 679

ISBN-13: 1139495062

DOWNLOAD EBOOK

This book introduces the reader to all the basic physical building blocks of climate needed to understand the present and past climate of Earth, the climates of Solar System planets, and the climates of extrasolar planets. These building blocks include thermodynamics, infrared radiative transfer, scattering, surface heat transfer and various processes governing the evolution of atmospheric composition. Nearly four hundred problems are supplied to help consolidate the reader's understanding, and to lead the reader towards original research on planetary climate. This textbook is invaluable for advanced undergraduate or beginning graduate students in atmospheric science, Earth and planetary science, astrobiology, and physics. It also provides a superb reference text for researchers in these subjects, and is very suitable for academic researchers trained in physics or chemistry who wish to rapidly gain enough background to participate in the excitement of the new research opportunities opening in planetary climate.


Ocean Dynamics

Ocean Dynamics

Author: Dirk Olbers

Publisher: Springer Science & Business Media

Published: 2012-04-27

Total Pages: 717

ISBN-13: 364223450X

DOWNLOAD EBOOK

Ocean Dynamics’ is a concise introduction to the fundamentals of fluid mechanics, non-equilibrium thermodynamics and the common approximations for geophysical fluid dynamics, presenting a comprehensive approach to large-scale ocean circulation theory. The book is written on the physical and mathematical level of graduate students in theoretical courses of physical oceanography, meteorology and environmental physics. An extensive bibliography and index, extensive side notes and recommendations for further reading, and a comparison with the specific atmospheric physics where applicable, makes this volume also a useful reading for researchers. Each of the four parts of the book – fundamental laws, common approximations, ocean waves, oceanic turbulence and eddies, and selected aspects of ocean dynamics – starts with elementary considerations, blending then classical topics with more advanced developments of fluid mechanics and theoretical oceanography. The last part covers the theory of the global wind-driven circulation in homogeneous and stratified regimes, the circulation and overturning in the Southern Ocean, and the global meridional overturning and thermohaline-driven circulation. Emphasis is placed on simple physical models rather than access to extensive numerical results, enabling students to understand and reproduce the complex theory mostly by analytical means. All equations and models are derived in detail and illustrated by numerous figures. The appendix provides short excursions into the mathematical background, such as vector analysis, statistics, and differential equations