This volume honors Professor Peter C.B. Phillips' many contributions to the field of econometrics. The topics include non-stationary time series, panel models, financial econometrics, predictive tests, IV estimation and inference, difference-in-difference regressions, stochastic dominance techniques, and information matrix testing.
This book presents the econometric foundations and applications of multi-dimensional panels, including modern methods of big data analysis. The last two decades or so, the use of panel data has become a standard in many areas of economic analysis. The available models formulations became more complex, the estimation and hypothesis testing methods more sophisticated. The interaction between economics and econometrics resulted in a huge publication output, deepening and widening immensely our knowledge and understanding in both. The traditional panel data, by nature, are two-dimensional. Lately, however, as part of the big data revolution, there has been a rapid emergence of three, four and even higher dimensional panel data sets. These have started to be used to study the flow of goods, capital, and services, but also some other economic phenomena that can be better understood in higher dimensions. Oddly, applications rushed ahead of theory in this field. This book is aimed at filling this widening gap. The first theoretical part of the volume is providing the econometric foundations to deal with these new high-dimensional panel data sets. It not only synthesizes our current knowledge, but mostly, presents new research results. The second empirical part of the book provides insight into the most relevant applications in this area. These chapters are a mixture of surveys and new results, always focusing on the econometric problems and feasible solutions.
Drawing upon the recent explosion of research in the field, a diverse group of scholars surveys the latest strategies for solving ecological inference problems, the process of trying to infer individual behavior from aggregate data. The uncertainties and information lost in aggregation make ecological inference one of the most difficult areas of statistical inference, but these inferences are required in many academic fields, as well as by legislatures and the Courts in redistricting, marketing research by business, and policy analysis by governments. This wide-ranging collection of essays offers many fresh and important contributions to the study of ecological inference.
The majority of empirical research in economics ignores the potential benefits of nonparametric methods, while the majority of advances in nonparametric theory ignores the problems faced in applied econometrics. This book helps bridge this gap between applied economists and theoretical nonparametric econometricians. It discusses in depth, and in terms that someone with only one year of graduate econometrics can understand, basic to advanced nonparametric methods. The analysis starts with density estimation and motivates the procedures through methods that should be familiar to the reader. It then moves on to kernel regression, estimation with discrete data, and advanced methods such as estimation with panel data and instrumental variables models. The book pays close attention to the issues that arise with programming, computing speed, and application. In each chapter, the methods discussed are applied to actual data, paying attention to presentation of results and potential pitfalls.
The anthrax incidents following the 9/11 terrorist attacks put the spotlight on the nation's public health agencies, placing it under an unprecedented scrutiny that added new dimensions to the complex issues considered in this report. The Future of the Public's Health in the 21st Century reaffirms the vision of Healthy People 2010, and outlines a systems approach to assuring the nation's health in practice, research, and policy. This approach focuses on joining the unique resources and perspectives of diverse sectors and entities and challenges these groups to work in a concerted, strategic way to promote and protect the public's health. Focusing on diverse partnerships as the framework for public health, the book discusses: The need for a shift from an individual to a population-based approach in practice, research, policy, and community engagement. The status of the governmental public health infrastructure and what needs to be improved, including its interface with the health care delivery system. The roles nongovernment actors, such as academia, business, local communities and the media can play in creating a healthy nation. Providing an accessible analysis, this book will be important to public health policy-makers and practitioners, business and community leaders, health advocates, educators and journalists.
Conditional Cash Transfer (CCT) programs aim to reduce poverty by making welfare programs conditional upon the receivers' actions. That is, the government only transfers the money to persons who meet certain criteria. These criteria may include enrolling children into public schools, getting regular check-ups at the doctor's office, receiving vaccinations, or the like. They have been hailed as a way of reducing inequality and helping households break out of a vicious cycle whereby poverty is transmitted from one generation to another. Do these and other claims make sense? Are they supported by the available empirical evidence? This volume seeks to answer these and other related questions. Specifically, it lays out a conceptual framework for thinking about the economic rationale for CCTs; it reviews the very rich evidence that has accumulated on CCTs; it discusses how the conceptual framework and the evidence on impacts should inform the design of CCT programs in practice; and it discusses how CCTs fit in the context of broader social policies. The authors show that there is considerable evidence that CCTs have improved the lives of poor people and argue that conditional cash transfers have been an effective way of redistributing income to the poor. They also recognize that even the best-designed and managed CCT cannot fulfill all of the needs of a comprehensive social protection system. They therefore need to be complemented with other interventions, such as workfare or employment programs, and social pensions.