Bayesian Estimation of DSGE Models

Bayesian Estimation of DSGE Models

Author: Edward P. Herbst

Publisher: Princeton University Press

Published: 2015-12-29

Total Pages: 296

ISBN-13: 1400873738

DOWNLOAD EBOOK

Dynamic stochastic general equilibrium (DSGE) models have become one of the workhorses of modern macroeconomics and are extensively used for academic research as well as forecasting and policy analysis at central banks. This book introduces readers to state-of-the-art computational techniques used in the Bayesian analysis of DSGE models. The book covers Markov chain Monte Carlo techniques for linearized DSGE models, novel sequential Monte Carlo methods that can be used for parameter inference, and the estimation of nonlinear DSGE models based on particle filter approximations of the likelihood function. The theoretical foundations of the algorithms are discussed in depth, and detailed empirical applications and numerical illustrations are provided. The book also gives invaluable advice on how to tailor these algorithms to specific applications and assess the accuracy and reliability of the computations. Bayesian Estimation of DSGE Models is essential reading for graduate students, academic researchers, and practitioners at policy institutions.


Macroeconometrics and Time Series Analysis

Macroeconometrics and Time Series Analysis

Author: Steven Durlauf

Publisher: Springer

Published: 2016-04-30

Total Pages: 417

ISBN-13: 0230280838

DOWNLOAD EBOOK

Specially selected from The New Palgrave Dictionary of Economics 2nd edition, each article within this compendium covers the fundamental themes within the discipline and is written by a leading practitioner in the field. A handy reference tool.


Var Models in Macroeconomics - New Developments and Applications

Var Models in Macroeconomics - New Developments and Applications

Author: Thomas B. Fomby

Publisher: Emerald Group Publishing Limited

Published: 2013-12-18

Total Pages: 0

ISBN-13: 9781781907528

DOWNLOAD EBOOK

Advances in Econometrics publishes original scholarly econometric papers with the intention of expanding the use of developed and emerging econometric techniques by disseminating ideas on the theory and practice of econometrics, throughout the empirical economic, business and social science literature.


Accelerating Monte Carlo methods for Bayesian inference in dynamical models

Accelerating Monte Carlo methods for Bayesian inference in dynamical models

Author: Johan Dahlin

Publisher: Linköping University Electronic Press

Published: 2016-03-22

Total Pages: 139

ISBN-13: 9176857972

DOWNLOAD EBOOK

Making decisions and predictions from noisy observations are two important and challenging problems in many areas of society. Some examples of applications are recommendation systems for online shopping and streaming services, connecting genes with certain diseases and modelling climate change. In this thesis, we make use of Bayesian statistics to construct probabilistic models given prior information and historical data, which can be used for decision support and predictions. The main obstacle with this approach is that it often results in mathematical problems lacking analytical solutions. To cope with this, we make use of statistical simulation algorithms known as Monte Carlo methods to approximate the intractable solution. These methods enjoy well-understood statistical properties but are often computational prohibitive to employ. The main contribution of this thesis is the exploration of different strategies for accelerating inference methods based on sequential Monte Carlo (SMC) and Markov chain Monte Carlo (MCMC). That is, strategies for reducing the computational effort while keeping or improving the accuracy. A major part of the thesis is devoted to proposing such strategies for the MCMC method known as the particle Metropolis-Hastings (PMH) algorithm. We investigate two strategies: (i) introducing estimates of the gradient and Hessian of the target to better tailor the algorithm to the problem and (ii) introducing a positive correlation between the point-wise estimates of the target. Furthermore, we propose an algorithm based on the combination of SMC and Gaussian process optimisation, which can provide reasonable estimates of the posterior but with a significant decrease in computational effort compared with PMH. Moreover, we explore the use of sparseness priors for approximate inference in over-parametrised mixed effects models and autoregressive processes. This can potentially be a practical strategy for inference in the big data era. Finally, we propose a general method for increasing the accuracy of the parameter estimates in non-linear state space models by applying a designed input signal. Borde Riksbanken höja eller sänka reporäntan vid sitt nästa möte för att nå inflationsmålet? Vilka gener är förknippade med en viss sjukdom? Hur kan Netflix och Spotify veta vilka filmer och vilken musik som jag vill lyssna på härnäst? Dessa tre problem är exempel på frågor där statistiska modeller kan vara användbara för att ge hjälp och underlag för beslut. Statistiska modeller kombinerar teoretisk kunskap om exempelvis det svenska ekonomiska systemet med historisk data för att ge prognoser av framtida skeenden. Dessa prognoser kan sedan användas för att utvärdera exempelvis vad som skulle hända med inflationen i Sverige om arbetslösheten sjunker eller hur värdet på mitt pensionssparande förändras när Stockholmsbörsen rasar. Tillämpningar som dessa och många andra gör statistiska modeller viktiga för många delar av samhället. Ett sätt att ta fram statistiska modeller bygger på att kontinuerligt uppdatera en modell allteftersom mer information samlas in. Detta angreppssätt kallas för Bayesiansk statistik och är särskilt användbart när man sedan tidigare har bra insikter i modellen eller tillgång till endast lite historisk data för att bygga modellen. En nackdel med Bayesiansk statistik är att de beräkningar som krävs för att uppdatera modellen med den nya informationen ofta är mycket komplicerade. I sådana situationer kan man istället simulera utfallet från miljontals varianter av modellen och sedan jämföra dessa mot de historiska observationerna som finns till hands. Man kan sedan medelvärdesbilda över de varianter som gav bäst resultat för att på så sätt ta fram en slutlig modell. Det kan därför ibland ta dagar eller veckor för att ta fram en modell. Problemet blir särskilt stort när man använder mer avancerade modeller som skulle kunna ge bättre prognoser men som tar för lång tid för att bygga. I denna avhandling använder vi ett antal olika strategier för att underlätta eller förbättra dessa simuleringar. Vi föreslår exempelvis att ta hänsyn till fler insikter om systemet och därmed minska antalet varianter av modellen som behöver undersökas. Vi kan således redan utesluta vissa modeller eftersom vi har en bra uppfattning om ungefär hur en bra modell ska se ut. Vi kan också förändra simuleringen så att den enklare rör sig mellan olika typer av modeller. På detta sätt utforskas rymden av alla möjliga modeller på ett mer effektivt sätt. Vi föreslår ett antal olika kombinationer och förändringar av befintliga metoder för att snabba upp anpassningen av modellen till observationerna. Vi visar att beräkningstiden i vissa fall kan minska ifrån några dagar till någon timme. Förhoppningsvis kommer detta i framtiden leda till att man i praktiken kan använda mer avancerade modeller som i sin tur resulterar i bättre prognoser och beslut.


Structural Macroeconometrics

Structural Macroeconometrics

Author: David N. DeJong

Publisher: Princeton University Press

Published: 2011-10-03

Total Pages: 435

ISBN-13: 1400840503

DOWNLOAD EBOOK

The revised edition of the essential resource on macroeconometrics Structural Macroeconometrics provides a thorough overview and in-depth exploration of methodologies, models, and techniques used to analyze forces shaping national economies. In this thoroughly revised second edition, David DeJong and Chetan Dave emphasize time series econometrics and unite theoretical and empirical research, while taking into account important new advances in the field. The authors detail strategies for solving dynamic structural models and present the full range of methods for characterizing and evaluating empirical implications, including calibration exercises, method-of-moment procedures, and likelihood-based procedures, both classical and Bayesian. The authors look at recent strides that have been made to enhance numerical efficiency, consider the expanded applicability of dynamic factor models, and examine the use of alternative assumptions involving learning and rational inattention on the part of decision makers. The treatment of methodologies for obtaining nonlinear model representations has been expanded, and linear and nonlinear model representations are integrated throughout the text. The book offers a rich array of implementation algorithms, sample empirical applications, and supporting computer code. Structural Macroeconometrics is the ideal textbook for graduate students seeking an introduction to macroeconomics and econometrics, and for advanced students pursuing applied research in macroeconomics. The book's historical perspective, along with its broad presentation of alternative methodologies, makes it an indispensable resource for academics and professionals.


Estimating How the Macroeconomy Works

Estimating How the Macroeconomy Works

Author: Ray C. FAIR

Publisher: Harvard University Press

Published: 2009-06-30

Total Pages: 314

ISBN-13: 0674036638

DOWNLOAD EBOOK

Macroeconomics tries to describe and explain the economywide movement of prices, output, and unemployment. The field has been sharply divided among various schools, including Keynesian, monetarist, new classical, and others. It has also been split between theorists and empiricists. Ray Fair is a resolute empiricist, developing and refining methods for testing theories and models. The field cannot advance without the discipline of testing how well the models approximate the data. Using a multicountry econometric model, he examines several important questions, including what causes inflation, how monetary authorities behave and what are their stabilization limits, how large is the wealth effect on aggregate consumption, whether European monetary policy has been too restrictive, and how large are the stabilization costs to Europe of adopting the euro. He finds, among other things, little evidence for the rational expectations hypothesis and for the so-called non-accelerating inflation rate of unemployment (NAIRU) hypothesis. He also shows that the U.S. economy in the last half of the 1990s was not a new age economy.


Managing Uncertainty, Mitigating Risk

Managing Uncertainty, Mitigating Risk

Author: Nick Firoozye

Publisher: Springer

Published: 2016-04-20

Total Pages: 281

ISBN-13: 1137334541

DOWNLOAD EBOOK

Managing Uncertainty, Mitigating Risk proposes that financial risk management broaden its approach, maintaining quantification where possible, but incorporating uncertainty. The author shows that by using broad quantification techniques, and using reason as the guiding principle, practitioners can see a more holistic and complete picture.


A History of Macroeconomics from Keynes to Lucas and Beyond

A History of Macroeconomics from Keynes to Lucas and Beyond

Author: Michel De Vroey

Publisher: Cambridge University Press

Published: 2016-01-08

Total Pages: 451

ISBN-13: 0521898439

DOWNLOAD EBOOK

This book retraces the history of macroeconomics from Keynes's General Theory to the present. Central to it is the contrast between a Keynesian era and a Lucasian - or dynamic stochastic general equilibrium (DSGE) - era, each ruled by distinct methodological standards. In the Keynesian era, the book studies the following theories: Keynesian macroeconomics, monetarism, disequilibrium macro (Patinkin, Leijongufvud, and Clower) non-Walrasian equilibrium models, and first-generation new Keynesian models. Three stages are identified in the DSGE era: new classical macro (Lucas), RBC modelling, and second-generation new Keynesian modeling. The book also examines a few selected works aimed at presenting alternatives to Lucasian macro. While not eschewing analytical content, Michel De Vroey focuses on substantive assessments, and the models studied are presented in a pedagogical and vivid yet critical way.


Post Walrasian Macroeconomics

Post Walrasian Macroeconomics

Author: David Colander

Publisher: Cambridge University Press

Published: 2006-07-17

Total Pages: 33

ISBN-13: 1139459058

DOWNLOAD EBOOK

Macroeconomics is evolving in an almost dialectic fashion. The latest evolution is the development of a new synthesis that combines insights of new classical, new Keynesian and real business cycle traditions into a dynamic, stochastic general equilibrium (DSGE) model that serves as a foundation for thinking about macro policy. That new synthesis has opened up the door to a new antithesis, which is being driven by advances in computing power and analytic techniques. This new synthesis is coalescing around developments in complexity theory, automated general to specific econometric modeling, agent-based models, and non-linear and statistical dynamical models. This book thus provides the reader with an introduction to what might be called a Post Walrasian research program that is developing as the antithesis of the Walrasian DSGE synthesis.