An unparalleled learning tool and guide to error correction coding Error correction coding techniques allow the detection and correction of errors occurring during the transmission of data in digital communication systems. These techniques are nearly universally employed in modern communication systems, and are thus an important component of the modern information economy. Error Correction Coding: Mathematical Methods and Algorithms provides a comprehensive introduction to both the theoretical and practical aspects of error correction coding, with a presentation suitable for a wide variety of audiences, including graduate students in electrical engineering, mathematics, or computer science. The pedagogy is arranged so that the mathematical concepts are presented incrementally, followed immediately by applications to coding. A large number of exercises expand and deepen students' understanding. A unique feature of the book is a set of programming laboratories, supplemented with over 250 programs and functions on an associated Web site, which provides hands-on experience and a better understanding of the material. These laboratories lead students through the implementation and evaluation of Hamming codes, CRC codes, BCH and R-S codes, convolutional codes, turbo codes, and LDPC codes. This text offers both "classical" coding theory-such as Hamming, BCH, Reed-Solomon, Reed-Muller, and convolutional codes-as well as modern codes and decoding methods, including turbo codes, LDPC codes, repeat-accumulate codes, space time codes, factor graphs, soft-decision decoding, Guruswami-Sudan decoding, EXIT charts, and iterative decoding. Theoretical complements on performance and bounds are presented. Coding is also put into its communications and information theoretic context and connections are drawn to public key cryptosystems. Ideal as a classroom resource and a professional reference, this thorough guide will benefit electrical and computer engineers, mathematicians, students, researchers, and scientists.
Error Coding for Engineers provides a useful tool for practicing engineers, students, and researchers, focusing on the applied rather than the theoretical. It describes the processes involved in coding messages in such a way that, if errors occur during transmission or storage, they are detected and, if necessary, corrected. Very little knowledge beyond a basic understanding of binary manipulation and Boolean algebra is assumed, making the subject accessible to a broad readership including non-specialists. The approach is tutorial: numerous examples, illustrations, and tables are included, along with over 30 pages of hands-on exercises and solutions. Error coding is essential in many modern engineering applications. Engineers involved in communications design, DSP-based applications, IC design, protocol design, storage solutions, and memory product design are among those who will find the book to be a valuable reference. Error Coding for Engineers is also suitable as a text for basic and advanced university courses in communications and engineering.
Error coding is a fascinating subject as much, if not more so, as it is an indispensable part of modem engineering systems. Unfortunately, in a bid to remain general and to create a solid foundation upon which to build, many books on this subject are out of the reach of those with more engineering-based, or non-mathematical backgrounds. This is a pity because in many cases the maths is tractable with few and simple rules. If we are content to believe that it works, and let others worry about the deeper mysteries of how or why, then with a little practice the design and implementation of practical error coding systems becomes straightforward. In this text I have attempted to reveal the useful kernel of the subject, removing the shell of terms and proofs that usually surrounds it. Being somewhat empirical in nature ( an empiricist), and occasionally heard to quote the adage, 'if it works twice it's a law', my explanations take this form. For many, including myself, abstract ideas are often better grasped by practical illustration than from yards of theory.
This book discusses both the theory and practical applications of self-correcting data, commonly known as error-correcting codes. The applications included demonstrate the importance of these codes in a wide range of everyday technologies, from smartphones to secure communications and transactions. Written in a readily understandable style, the book presents the authors’ twenty-five years of research organized into five parts: Part I is concerned with the theoretical performance attainable by using error correcting codes to achieve communications efficiency in digital communications systems. Part II explores the construction of error-correcting codes and explains the different families of codes and how they are designed. Techniques are described for producing the very best codes. Part III addresses the analysis of low-density parity-check (LDPC) codes, primarily to calculate their stopping sets and low-weight codeword spectrum which determines the performance of th ese codes. Part IV deals with decoders designed to realize optimum performance. Part V describes applications which include combined error correction and detection, public key cryptography using Goppa codes, correcting errors in passwords and watermarking. This book is a valuable resource for anyone interested in error-correcting codes and their applications, ranging from non-experts to professionals at the forefront of research in their field. This book is open access under a CC BY 4.0 license.
Today, software engineers need to know not only how to program effectively but also how to develop proper engineering practices to make their codebase sustainable and healthy. This book emphasizes this difference between programming and software engineering. How can software engineers manage a living codebase that evolves and responds to changing requirements and demands over the length of its life? Based on their experience at Google, software engineers Titus Winters and Hyrum Wright, along with technical writer Tom Manshreck, present a candid and insightful look at how some of the world’s leading practitioners construct and maintain software. This book covers Google’s unique engineering culture, processes, and tools and how these aspects contribute to the effectiveness of an engineering organization. You’ll explore three fundamental principles that software organizations should keep in mind when designing, architecting, writing, and maintaining code: How time affects the sustainability of software and how to make your code resilient over time How scale affects the viability of software practices within an engineering organization What trade-offs a typical engineer needs to make when evaluating design and development decisions
Hardcore Programming for Mechanical Engineers is for intermediate programmers who want to write good applications that solve tough engineering problems – from scratch. This book will teach you how to solve engineering problems with Python. The “hardcore” approach means that you will learn to get the correct results by coding everything from scratch. Forget relying on third-party software – there are no shortcuts on the path to proficiency. Instead, using familiar concepts from linear algebra, geometry and physics, you’ll write your own libraries, draw your own primitives, and build your own applications. Author Angel Sola covers core programming techniques mechanical engineers need to know, with a focus on high-quality code and automated unit testing for error-free implementations. After basic primers on Python and using the command line, you’ll quickly develop a geometry toolbox, filling it with lines and shapes for diagramming problems. As your understanding grows chapter-by-chapter, you’ll create vector graphics and animations for dynamic simulations; you’ll code algorithms that can do complex numerical computations; and you’ll put all of this knowledge together to build a complete structural analysis application that solves a 2D truss problem – similar to the software projects conducted by real-world mechanical engineers. You'll learn: • How to use geometric primitives, like points and polygons, and implement matrices • Best practices for clean code, including unit testing, encapsulation, and expressive names • Processes for drawing images to the screen and creating animations inside Tkinter’s Canvas widget • How to write programs that read from a file, parse the data, and produce vector images • Numerical methods for solving large systems of linear equations, like the Cholesky decomposition algorithm
An industry insider explains why there is so much bad software—and why academia doesn't teach programmers what industry wants them to know. Why is software so prone to bugs? So vulnerable to viruses? Why are software products so often delayed, or even canceled? Is software development really hard, or are software developers just not that good at it? In The Problem with Software, Adam Barr examines the proliferation of bad software, explains what causes it, and offers some suggestions on how to improve the situation. For one thing, Barr points out, academia doesn't teach programmers what they actually need to know to do their jobs: how to work in a team to create code that works reliably and can be maintained by somebody other than the original authors. As the size and complexity of commercial software have grown, the gap between academic computer science and industry has widened. It's an open secret that there is little engineering in software engineering, which continues to rely not on codified scientific knowledge but on intuition and experience. Barr, who worked as a programmer for more than twenty years, describes how the industry has evolved, from the era of mainframes and Fortran to today's embrace of the cloud. He explains bugs and why software has so many of them, and why today's interconnected computers offer fertile ground for viruses and worms. The difference between good and bad software can be a single line of code, and Barr includes code to illustrate the consequences of seemingly inconsequential choices by programmers. Looking to the future, Barr writes that the best prospect for improving software engineering is the move to the cloud. When software is a service and not a product, companies will have more incentive to make it good rather than “good enough to ship."
Widely considered one of the best practical guides to programming, Steve McConnell’s original CODE COMPLETE has been helping developers write better software for more than a decade. Now this classic book has been fully updated and revised with leading-edge practices—and hundreds of new code samples—illustrating the art and science of software construction. Capturing the body of knowledge available from research, academia, and everyday commercial practice, McConnell synthesizes the most effective techniques and must-know principles into clear, pragmatic guidance. No matter what your experience level, development environment, or project size, this book will inform and stimulate your thinking—and help you build the highest quality code. Discover the timeless techniques and strategies that help you: Design for minimum complexity and maximum creativity Reap the benefits of collaborative development Apply defensive programming techniques to reduce and flush out errors Exploit opportunities to refactor—or evolve—code, and do it safely Use construction practices that are right-weight for your project Debug problems quickly and effectively Resolve critical construction issues early and correctly Build quality into the beginning, middle, and end of your project