Ergodic Theory, Hyperbolic Dynamics and Dimension Theory

Ergodic Theory, Hyperbolic Dynamics and Dimension Theory

Author: Luís Barreira

Publisher: Springer Science & Business Media

Published: 2012-04-28

Total Pages: 295

ISBN-13: 3642280900

DOWNLOAD EBOOK

Over the last two decades, the dimension theory of dynamical systems has progressively developed into an independent and extremely active field of research. The main aim of this volume is to offer a unified, self-contained introduction to the interplay of these three main areas of research: ergodic theory, hyperbolic dynamics, and dimension theory. It starts with the basic notions of the first two topics and ends with a sufficiently high-level introduction to the third. Furthermore, it includes an introduction to the thermodynamic formalism, which is an important tool in dimension theory. The volume is primarily intended for graduate students interested in dynamical systems, as well as researchers in other areas who wish to learn about ergodic theory, thermodynamic formalism, or dimension theory of hyperbolic dynamics at an intermediate level in a sufficiently detailed manner. In particular, it can be used as a basis for graduate courses on any of these three subjects. The text can also be used for self-study: it is self-contained, and with the exception of some well-known basic facts from other areas, all statements include detailed proofs.


Ergodic Theory, Hyperbolic Dynamics and Dimension Theory

Ergodic Theory, Hyperbolic Dynamics and Dimension Theory

Author: Luis Barreira

Publisher: Springer

Published: 2012-05-06

Total Pages: 290

ISBN-13: 9783642280917

DOWNLOAD EBOOK

Over the last two decades, the dimension theory of dynamical systems has progressively developed into an independent and extremely active field of research. The main aim of this volume is to offer a unified, self-contained introduction to the interplay of these three main areas of research: ergodic theory, hyperbolic dynamics, and dimension theory. It starts with the basic notions of the first two topics and ends with a sufficiently high-level introduction to the third. Furthermore, it includes an introduction to the thermodynamic formalism, which is an important tool in dimension theory. The volume is primarily intended for graduate students interested in dynamical systems, as well as researchers in other areas who wish to learn about ergodic theory, thermodynamic formalism, or dimension theory of hyperbolic dynamics at an intermediate level in a sufficiently detailed manner. In particular, it can be used as a basis for graduate courses on any of these three subjects. The text can also be used for self-study: it is self-contained, and with the exception of some well-known basic facts from other areas, all statements include detailed proofs.


Ergodic Theory and Differentiable Dynamics

Ergodic Theory and Differentiable Dynamics

Author: Ricardo Mañé

Publisher: Springer Science & Business Media

Published: 1987-01

Total Pages: 317

ISBN-13: 9783540152781

DOWNLOAD EBOOK

This version differs from the Portuguese edition only in a few additions and many minor corrections. Naturally, this edition raised the question of whether to use the opportunity to introduce major additions. In a book like this, ending in the heart of a rich research field, there are always further topics that should arguably be included. Subjects like geodesic flows or the role of Hausdorff dimension in con­ temporary ergodic theory are two of the most tempting gaps to fill. However, I let it stand with practically the same boundaries as the original version, still believing these adequately fulfill its goal of presenting the basic knowledge required to approach the research area of Differentiable Ergodic Theory. I wish to thank Dr. Levy for the excellent translation and several of the correc­ tions mentioned above. Rio de Janeiro, January 1987 Ricardo Mane Introduction This book is an introduction to ergodic theory, with emphasis on its relationship with the theory of differentiable dynamical systems, which is sometimes called differentiable ergodic theory. Chapter 0, a quick review of measure theory, is included as a reference. Proofs are omitted, except for some results on derivatives with respect to sequences of partitions, which are not generally found in standard texts on measure and integration theory and tend to be lost within a much wider framework in more advanced texts.


Mathematics of Complexity and Dynamical Systems

Mathematics of Complexity and Dynamical Systems

Author: Robert A. Meyers

Publisher: Springer Science & Business Media

Published: 2011-10-05

Total Pages: 1885

ISBN-13: 1461418054

DOWNLOAD EBOOK

Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.


Thermodynamic Formalism and Applications to Dimension Theory

Thermodynamic Formalism and Applications to Dimension Theory

Author: Luis Barreira

Publisher: Springer Science & Business Media

Published: 2011-08-24

Total Pages: 300

ISBN-13: 3034802064

DOWNLOAD EBOOK

This self-contained monograph presents a unified exposition of the thermodynamic formalism and some of its main extensions, with emphasis on the relation to dimension theory and multifractal analysis of dynamical systems. In particular, the book considers three different flavors of the thermodynamic formalism, namely nonadditive, subadditive, and almost additive, and provides a detailed discussion of some of the most significant results in the area, some of them quite recent. It also includes a discussion of the most substantial applications of these flavors of the thermodynamic formalism to dimension theory and multifractal analysis of dynamical systems.


Ergodic Theory and Fractal Geometry

Ergodic Theory and Fractal Geometry

Author: Hillel Furstenberg

Publisher: American Mathematical Society

Published: 2014-08-08

Total Pages: 82

ISBN-13: 1470410346

DOWNLOAD EBOOK

Fractal geometry represents a radical departure from classical geometry, which focuses on smooth objects that "straighten out" under magnification. Fractals, which take their name from the shape of fractured objects, can be characterized as retaining their lack of smoothness under magnification. The properties of fractals come to light under repeated magnification, which we refer to informally as "zooming in". This zooming-in process has its parallels in dynamics, and the varying "scenery" corresponds to the evolution of dynamical variables. The present monograph focuses on applications of one branch of dynamics--ergodic theory--to the geometry of fractals. Much attention is given to the all-important notion of fractal dimension, which is shown to be intimately related to the study of ergodic averages. It has been long known that dynamical systems serve as a rich source of fractal examples. The primary goal in this monograph is to demonstrate how the minute structure of fractals is unfolded when seen in the light of related dynamics. A co-publication of the AMS and CBMS.


Introduction to Smooth Ergodic Theory

Introduction to Smooth Ergodic Theory

Author: Luís Barreira

Publisher: American Mathematical Society

Published: 2023-05-19

Total Pages: 355

ISBN-13: 1470470659

DOWNLOAD EBOOK

This book is the first comprehensive introduction to smooth ergodic theory. It consists of two parts: the first introduces the core of the theory and the second discusses more advanced topics. In particular, the book describes the general theory of Lyapunov exponents and its applications to the stability theory of differential equations, the concept of nonuniform hyperbolicity, stable manifold theory (with emphasis on absolute continuity of invariant foliations), and the ergodic theory of dynamical systems with nonzero Lyapunov exponents. A detailed description of all the basic examples of conservative systems with nonzero Lyapunov exponents, including the geodesic flows on compact surfaces of nonpositive curvature, is also presented. There are more than 80 exercises. The book is aimed at graduate students specializing in dynamical systems and ergodic theory as well as anyone who wishes to get a working knowledge of smooth ergodic theory and to learn how to use its tools. It can also be used as a source for special topics courses on nonuniform hyperbolicity. The only prerequisite for using this book is a basic knowledge of real analysis, measure theory, differential equations, and topology, although the necessary background definitions and results are provided. In this second edition, the authors improved the exposition and added more exercises to make the book even more student-oriented. They also added new material to bring the book more in line with the current research in dynamical systems.


Conformal Fractals

Conformal Fractals

Author: Feliks Przytycki

Publisher: Cambridge University Press

Published: 2010-05-06

Total Pages: 365

ISBN-13: 0521438004

DOWNLOAD EBOOK

A one-stop introduction to the methods of ergodic theory applied to holomorphic iteration that is ideal for graduate courses.


Foundations of Ergodic Theory

Foundations of Ergodic Theory

Author: Marcelo Viana

Publisher: Cambridge University Press

Published: 2016-02-15

Total Pages: 547

ISBN-13: 1316445429

DOWNLOAD EBOOK

Rich with examples and applications, this textbook provides a coherent and self-contained introduction to ergodic theory, suitable for a variety of one- or two-semester courses. The authors' clear and fluent exposition helps the reader to grasp quickly the most important ideas of the theory, and their use of concrete examples illustrates these ideas and puts the results into perspective. The book requires few prerequisites, with background material supplied in the appendix. The first four chapters cover elementary material suitable for undergraduate students – invariance, recurrence and ergodicity – as well as some of the main examples. The authors then gradually build up to more sophisticated topics, including correlations, equivalent systems, entropy, the variational principle and thermodynamical formalism. The 400 exercises increase in difficulty through the text and test the reader's understanding of the whole theory. Hints and solutions are provided at the end of the book.