Ergodic Theory and Negative Curvature

Ergodic Theory and Negative Curvature

Author: Boris Hasselblatt

Publisher: Springer

Published: 2017-12-15

Total Pages: 334

ISBN-13: 3319430599

DOWNLOAD EBOOK

Focussing on the mathematics related to the recent proof of ergodicity of the (Weil–Petersson) geodesic flow on a nonpositively curved space whose points are negatively curved metrics on surfaces, this book provides a broad introduction to an important current area of research. It offers original textbook-level material suitable for introductory or advanced courses as well as deep insights into the state of the art of the field, making it useful as a reference and for self-study. The first chapters introduce hyperbolic dynamics, ergodic theory and geodesic and horocycle flows, and include an English translation of Hadamard's original proof of the Stable-Manifold Theorem. An outline of the strategy, motivation and context behind the ergodicity proof is followed by a careful exposition of it (using the Hopf argument) and of the pertinent context of Teichmüller theory. Finally, some complementary lectures describe the deep connections between geodesic flows in negative curvature and Diophantine approximation.


Lectures on Spaces of Nonpositive Curvature

Lectures on Spaces of Nonpositive Curvature

Author: Werner Ballmann

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 114

ISBN-13: 3034892403

DOWNLOAD EBOOK

Singular spaces with upper curvature bounds and, in particular, spaces of nonpositive curvature, have been of interest in many fields, including geometric (and combinatorial) group theory, topology, dynamical systems and probability theory. In the first two chapters of the book, a concise introduction into these spaces is given, culminating in the Hadamard-Cartan theorem and the discussion of the ideal boundary at infinity for simply connected complete spaces of nonpositive curvature. In the third chapter, qualitative properties of the geodesic flow on geodesically complete spaces of nonpositive curvature are discussed, as are random walks on groups of isometries of nonpositively curved spaces. The main class of spaces considered should be precisely complementary to symmetric spaces of higher rank and Euclidean buildings of dimension at least two (Rank Rigidity conjecture). In the smooth case, this is known and is the content of the Rank Rigidity theorem. An updated version of the proof of the latter theorem (in the smooth case) is presented in Chapter IV of the book. This chapter contains also a short introduction into the geometry of the unit tangent bundle of a Riemannian manifold and the basic facts about the geodesic flow. In an appendix by Misha Brin, a self-contained and short proof of the ergodicity of the geodesic flow of a compact Riemannian manifold of negative curvature is given. The proof is elementary and should be accessible to the non-specialist. Some of the essential features and problems of the ergodic theory of smooth dynamical systems are discussed, and the appendix can serve as an introduction into this theory.


The Ergodic Theory of Discrete Groups

The Ergodic Theory of Discrete Groups

Author: Peter J. Nicholls

Publisher: Cambridge University Press

Published: 1989-08-17

Total Pages: 237

ISBN-13: 0521376742

DOWNLOAD EBOOK

The interaction between ergodic theory and discrete groups has a long history and much work was done in this area by Hedlund, Hopf and Myrberg in the 1930s. There has been a great resurgence of interest in the field, due in large measure to the pioneering work of Dennis Sullivan. Tools have been developed and applied with outstanding success to many deep problems. The ergodic theory of discrete groups has become a substantial field of mathematical research in its own right, and it is the aim of this book to provide a rigorous introduction from first principles to some of the major aspects of the theory. The particular focus of the book is on the remarkable measure supported on the limit set of a discrete group that was first developed by S. J. Patterson for Fuchsian groups, and later extended and refined by Sullivan.


Ergodic Theory and Fractal Geometry

Ergodic Theory and Fractal Geometry

Author: Hillel Furstenberg

Publisher: American Mathematical Society

Published: 2014-08-08

Total Pages: 82

ISBN-13: 1470410346

DOWNLOAD EBOOK

Fractal geometry represents a radical departure from classical geometry, which focuses on smooth objects that "straighten out" under magnification. Fractals, which take their name from the shape of fractured objects, can be characterized as retaining their lack of smoothness under magnification. The properties of fractals come to light under repeated magnification, which we refer to informally as "zooming in". This zooming-in process has its parallels in dynamics, and the varying "scenery" corresponds to the evolution of dynamical variables. The present monograph focuses on applications of one branch of dynamics--ergodic theory--to the geometry of fractals. Much attention is given to the all-important notion of fractal dimension, which is shown to be intimately related to the study of ergodic averages. It has been long known that dynamical systems serve as a rich source of fractal examples. The primary goal in this monograph is to demonstrate how the minute structure of fractals is unfolded when seen in the light of related dynamics. A co-publication of the AMS and CBMS.


Geodesic Flows

Geodesic Flows

Author: Gabriel P. Paternain

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 160

ISBN-13: 1461216001

DOWNLOAD EBOOK

The aim of this book is to present the fundamental concepts and properties of the geodesic flow of a closed Riemannian manifold. The topics covered are close to my research interests. An important goal here is to describe properties of the geodesic flow which do not require curvature assumptions. A typical example of such a property and a central result in this work is Mane's formula that relates the topological entropy of the geodesic flow with the exponential growth rate of the average numbers of geodesic arcs between two points in the manifold. The material here can be reasonably covered in a one-semester course. I have in mind an audience with prior exposure to the fundamentals of Riemannian geometry and dynamical systems. I am very grateful for the assistance and criticism of several people in preparing the text. In particular, I wish to thank Leonardo Macarini and Nelson Moller who helped me with the writing of the first two chapters and the figures. Gonzalo Tomaria caught several errors and contributed with helpful suggestions. Pablo Spallanzani wrote solutions to several of the exercises. I have used his solutions to write many of the hints and answers. I also wish to thank the referee for a very careful reading of the manuscript and for a large number of comments with corrections and suggestions for improvement.


Dynamical Systems, Ergodic Theory and Applications

Dynamical Systems, Ergodic Theory and Applications

Author: L.A. Bunimovich

Publisher: Springer Science & Business Media

Published: 2000-04-05

Total Pages: 476

ISBN-13: 9783540663164

DOWNLOAD EBOOK

This EMS volume, the first edition of which was published as Dynamical Systems II, EMS 2, familiarizes the reader with the fundamental ideas and results of modern ergodic theory and its applications to dynamical systems and statistical mechanics. The enlarged and revised second edition adds two new contributions on ergodic theory of flows on homogeneous manifolds and on methods of algebraic geometry in the theory of interval exchange transformations.


Ergodic Theory and Semisimple Groups

Ergodic Theory and Semisimple Groups

Author: R.J. Zimmer

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 219

ISBN-13: 1468494880

DOWNLOAD EBOOK

This book is based on a course given at the University of Chicago in 1980-81. As with the course, the main motivation of this work is to present an accessible treatment, assuming minimal background, of the profound work of G. A. Margulis concerning rigidity, arithmeticity, and structure of lattices in semi simple groups, and related work of the author on the actions of semisimple groups and their lattice subgroups. In doing so, we develop the necessary prerequisites from earlier work of Borel, Furstenberg, Kazhdan, Moore, and others. One of the difficulties involved in an exposition of this material is the continuous interplay between ideas from the theory of algebraic groups on the one hand and ergodic theory on the other. This, of course, is not so much a mathematical difficulty as a cultural one, as the number of persons comfortable in both areas has not traditionally been large. We hope this work will also serve as a contribution towards improving that situation. While there are a number of satisfactory introductory expositions of the ergodic theory of integer or real line actions, there is no such exposition of the type of ergodic theoretic results with which we shall be dealing (concerning actions of more general groups), and hence we have assumed absolutely no knowledge of ergodic theory (not even the definition of "ergodic") on the part of the reader. All results are developed in full detail.