Equivariant Codimension One Surgery
Author: Sandor Howard Straus
Publisher:
Published: 1972
Total Pages: 156
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author: Sandor Howard Straus
Publisher:
Published: 1972
Total Pages: 156
ISBN-13:
DOWNLOAD EBOOKAuthor: Karl H. Dovermann
Publisher: Springer
Published: 2006-11-14
Total Pages: 234
ISBN-13: 3540463941
DOWNLOAD EBOOKThe theory of surgery on manifolds has been generalized to categories of manifolds with group actions in several different ways. This book discusses some basic properties that such theories have in common. Special emphasis is placed on analogs of the fourfold periodicity theorems in ordinary surgery and the roles of standard general position hypotheses on the strata of manifolds with group actions. The contents of the book presuppose some familiarity with the basic ideas of surgery theory and transformation groups, but no previous knowledge of equivariant surgery is assumed. The book is designed to serve either as an introduction to equivariant surgery theory for advanced graduate students and researchers in related areas, or as an account of the authors' previously unpublished work on periodicity for specialists in surgery theory or transformation groups.
Author: Giora Dula
Publisher: American Mathematical Soc.
Published: 1994
Total Pages: 97
ISBN-13: 0821825895
DOWNLOAD EBOOKObstruction theoretic methods are introduced into isovariant homotopy theory for a class of spaces with group actions; the latter includes all smooth actions of cyclic groups of prime power order. The central technical result is an equivalence between isovariant homotopy and specific equivariant homotopy theories for diagrams under suitable conditions. This leads to isovariant Whitehead theorems, an obstruction-theoretic approach to isovariant homotopy theory with obstructions in cohomology groups of ordinary and equivalent diagrams, and qualitative computations for rational homotopy groups of certain spaces of isovariant self maps of linear spheres. The computations show that these homotopy groups are often far more complicated than the rational homotopy groups for the corresponding spaces of equivariant self maps. Subsequent work will use these computations to construct new families of smooth actions on spheres that are topologically linear but differentiably nonlinear.
Author: Anthony Bak
Publisher: Springer Science & Business Media
Published: 2002-07-31
Total Pages: 272
ISBN-13: 9781402007835
DOWNLOAD EBOOKThis book provides an overview of some of the most active topics in the theory of transformation groups over the past decades and stresses advances obtained in the last dozen years. The emphasis is on actions of Lie groups on manifolds and CW complexes. Manifolds and actions of Lie groups on them are studied in the linear, semialgebraic, definable, analytic, smooth, and topological categories. Equivalent vector bundles play an important role. The work is divided into fifteen articles and will be of interest to anyone researching or studying transformations groups. The references make it easy to find details and original accounts of the topics surveyed, including tools and theories used in these accounts.
Author: Sylvain Cappell
Publisher: Princeton University Press
Published: 2014-09-08
Total Pages: 446
ISBN-13: 1400865212
DOWNLOAD EBOOKSurgery theory, the basis for the classification theory of manifolds, is now about forty years old. The sixtieth birthday (on December 14, 1996) of C.T.C. Wall, a leading member of the subject's founding generation, led the editors of this volume to reflect on the extraordinary accomplishments of surgery theory as well as its current enormously varied interactions with algebra, analysis, and geometry. Workers in many of these areas have often lamented the lack of a single source surveying surgery theory and its applications. Because no one person could write such a survey, the editors asked a variety of experts to report on the areas of current interest. This is the second of two volumes resulting from that collective effort. It will be useful to topologists, to other interested researchers, and to advanced students. The topics covered include current applications of surgery, Wall's finiteness obstruction, algebraic surgery, automorphisms and embeddings of manifolds, surgery theoretic methods for the study of group actions and stratified spaces, metrics of positive scalar curvature, and surgery in dimension four. In addition to the editors, the contributors are S. Ferry, M. Weiss, B. Williams, T. Goodwillie, J. Klein, S. Weinberger, B. Hughes, S. Stolz, R. Kirby, L. Taylor, and F. Quinn.
Author: Lowell Jones
Publisher: American Mathematical Soc.
Published: 1986
Total Pages: 133
ISBN-13: 0821824147
DOWNLOAD EBOOKAuthor: Andrew Ranicki
Publisher: Oxford University Press
Published: 2002
Total Pages: 396
ISBN-13: 9780198509240
DOWNLOAD EBOOKThis book is an introduction to surgery theory: the standard classification method for high-dimensional manifolds. It is aimed at graduate students, who have already had a basic topology course, and would now like to understand the topology of high-dimensional manifolds. This text contains entry-level accounts of the various prerequisites of both algebra and topology, including basic homotopy and homology, Poincare duality, bundles, co-bordism, embeddings, immersions, Whitehead torsion, Poincare complexes, spherical fibrations and quadratic forms and formations. While concentrating on the basic mechanics of surgery, this book includes many worked examples, useful drawings for illustration of the algebra and references for further reading.
Author: Charles Terence Clegg Wall
Publisher: American Mathematical Soc.
Published: 1999
Total Pages: 321
ISBN-13: 0821809423
DOWNLOAD EBOOKThe publication of this book in 1970 marked the culmination of a period in the history of the topology of manifolds. This edition, based on the original text, is supplemented by notes on subsequent developments and updated references and commentaries.
Author: Michael Crabb
Publisher: Springer
Published: 2018-01-24
Total Pages: 405
ISBN-13: 331971306X
DOWNLOAD EBOOKWritten by leading experts in the field, this monograph provides homotopy theoretic foundations for surgery theory on higher-dimensional manifolds. Presenting classical ideas in a modern framework, the authors carefully highlight how their results relate to (and generalize) existing results in the literature. The central result of the book expresses algebraic surgery theory in terms of the geometric Hopf invariant, a construction in stable homotopy theory which captures the double points of immersions. Many illustrative examples and applications of the abstract results are included in the book, making it of wide interest to topologists. Serving as a valuable reference, this work is aimed at graduate students and researchers interested in understanding how the algebraic and geometric topology fit together in the surgery theory of manifolds. It is the only book providing such a wide-ranging historical approach to the Hopf invariant, double points and surgery theory, with many results old and new.
Author: Stanley Chang
Publisher: Princeton University Press
Published: 2021-01-26
Total Pages: 472
ISBN-13: 0691200351
DOWNLOAD EBOOKAn advanced treatment of surgery theory for graduate students and researchers Surgery theory, a subfield of geometric topology, is the study of the classifications of manifolds. A Course on Surgery Theory offers a modern look at this important mathematical discipline and some of its applications. In this book, Stanley Chang and Shmuel Weinberger explain some of the triumphs of surgery theory during the past three decades, from both an algebraic and geometric point of view. They also provide an extensive treatment of basic ideas, main theorems, active applications, and recent literature. The authors methodically cover all aspects of surgery theory, connecting it to other relevant areas of mathematics, including geometry, homotopy theory, analysis, and algebra. Later chapters are self-contained, so readers can study them directly based on topic interest. Of significant use to high-dimensional topologists and researchers in noncommutative geometry and algebraic K-theory, A Course on Surgery Theory serves as an important resource for the mathematics community.