Equations with Involutive Operators

Equations with Involutive Operators

Author: Nikolai Karapetiants

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 444

ISBN-13: 1461201837

DOWNLOAD EBOOK

This self-contained title demonstrates an important interplay between abstract and concrete operator theory. Key ideas are developed in a step-by-step approach, beginning with required background and historical material, and culminating in the final chapters with state-of-the-art topics. Good examples, bibliography and index make this text a valuable classroom or reference resource.


Equations with Involutive Operators

Equations with Involutive Operators

Author: Nikolai Karapetiants

Publisher: Springer Science & Business Media

Published: 2001-06-21

Total Pages: 456

ISBN-13: 9780817641573

DOWNLOAD EBOOK

This self-contained title demonstrates an important interplay between abstract and concrete operator theory. Key ideas are developed in a step-by-step approach, beginning with required background and historical material, and culminating in the final chapters with state-of-the-art topics. Good examples, bibliography and index make this text a valuable classroom or reference resource.


Advances in Harmonic Analysis and Operator Theory

Advances in Harmonic Analysis and Operator Theory

Author: Alexandre Almeida

Publisher: Springer Science & Business Media

Published: 2013-01-31

Total Pages: 389

ISBN-13: 3034805160

DOWNLOAD EBOOK

This volume is dedicated to Professor Stefan Samko on the occasion of his seventieth birthday. The contributions display the range of his scientific interests in harmonic analysis and operator theory. Particular attention is paid to fractional integrals and derivatives, singular, hypersingular and potential operators in variable exponent spaces, pseudodifferential operators in various modern function and distribution spaces, as well as related applications, to mention but a few. Most contributions were firstly presented in two conferences at Lisbon and Aveiro, Portugal, in June‒July 2011.


Functional Differential Equations

Functional Differential Equations

Author: A. B. Antonevich

Publisher: CRC Press

Published: 1998-08-15

Total Pages: 432

ISBN-13: 9780582302693

DOWNLOAD EBOOK

Together with the authors' Volume I. C*-Theory, the two parts comprising Functional Differential Equations: II. C*-Applications form a masterful work-the first thorough, up-to-date exposition of this field of modern analysis lying between differential equations and C*-algebras. The two parts of Volume II contain the applications of the C*-structures and theory developed in Volume I. They show the technique of using the C*-results in the study of the solvability conditions of non-local functional differential equations and demonstrate the fundamental principles underlying the interrelations between C* and functional differential objects. The authors focus on non-local pseudodifferential, singular integral, and Toeplitz operators-with continuous and piecewise continuous coefficients-convolution type operators with oscillating coefficients and shifts, and operators associated with non-local boundary value problems containing transformation operators of an argument on the boundary. They build the symbolic calculus for all these classes of operators, use it to treat concrete examples of non-local operators, present the explicit computation of their Fredholmity conditions and the index formulae, and obtain a number of related results. Part 1: Equations with Continuous Coefficients and Part 2: Equations with Discontinuous Coefficients and Boundary Value Problems can each stand alone and prove a valuable resource for researchers and students interested in operator algebraic methods in the theory of functional differential equations, and to pure C*-algebraists looking for important and promising new applications. Together these books form a powerful library for this intriguing field of modern analysis.


Approximation of Additive Convolution-Like Operators

Approximation of Additive Convolution-Like Operators

Author: Victor Didenko

Publisher: Springer Science & Business Media

Published: 2008-09-19

Total Pages: 313

ISBN-13: 3764387513

DOWNLOAD EBOOK

This book deals with numerical analysis for certain classes of additive operators and related equations, including singular integral operators with conjugation, the Riemann-Hilbert problem, Mellin operators with conjugation, double layer potential equation, and the Muskhelishvili equation. The authors propose a unified approach to the analysis of the approximation methods under consideration based on special real extensions of complex C*-algebras. The list of the methods considered includes spline Galerkin, spline collocation, qualocation, and quadrature methods. The book is self-contained and accessible to graduate students.


Operator Theoretical Methods and Applications to Mathematical Physics

Operator Theoretical Methods and Applications to Mathematical Physics

Author: Israel Gohberg

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 472

ISBN-13: 3034879261

DOWNLOAD EBOOK

This volume is devoted to the life and work of the applied mathematician Professor Erhard Meister (1930-2001). He was a member of the editorial boards of this book series Operator The ory: Advances and Applications as well as of the journal Integral Equations and Operator Theory, both published by Birkhauser (now part of Springer-Verlag). Moreover he played a decisive role in the foundation of these two series by helping to establish contacts between Birkhauser and the founder and present chief editor of this book series after his emigration from Moldavia in 1974. The volume is divided into two parts. Part A contains reminiscences about the life of E. Meister including a short biography and an exposition of his professional work. Part B displays the wide range of his scientific interests through eighteen original papers contributed by authors with close scientific and personal relations to E. Meister. We hope that a great part of the numerous features of his life and work can be re-discovered from this book.


Equations with Involutive Operators

Equations with Involutive Operators

Author: Nikolaĭ Karapetovich Karapeti︠a︡nt︠s︡

Publisher: Birkhauser

Published: 2001

Total Pages: 464

ISBN-13:

DOWNLOAD EBOOK

"Equations with Involutive Operators" demonstrates an important interplay between abstract and concrete operator theory. The focus is on the investigation of a number of equations, which, while seemingly different, are all unified by the same idea: they are all realizations of some operator equations in Banach spaces. One permeating theme in these equations involves the role of the Fredholm property. The text is carefully written, self-contained, and covers a broad range of topics and results. Key ideas are developed in a step-by-step approach, beginning with required background and historical material, and culminating in the final chapters with state-of-the art topics. Experts in operator theory, integral equations, and function theory as well as students in these areas will find open problems for further investigations. The book will also be useful to engineers using operator theory and integral equation techniques. Good examples, bibliography and index make this text a valuable classroom or reference resource.


Operator Theory and Harmonic Analysis

Operator Theory and Harmonic Analysis

Author: Alexey N. Karapetyants

Publisher: Springer Nature

Published: 2021-09-27

Total Pages: 585

ISBN-13: 3030774937

DOWNLOAD EBOOK

This volume is part of the collaboration agreement between Springer and the ISAAC society. This is the first in the two-volume series originating from the 2020 activities within the international scientific conference "Modern Methods, Problems and Applications of Operator Theory and Harmonic Analysis" (OTHA), Southern Federal University in Rostov-on-Don, Russia. This volume is focused on general harmonic analysis and its numerous applications. The two volumes cover new trends and advances in several very important fields of mathematics, developed intensively over the last decade. The relevance of this topic is related to the study of complex multiparameter objects required when considering operators and objects with variable parameters.


Operator Theory, Functional Analysis and Applications

Operator Theory, Functional Analysis and Applications

Author: M. Amélia Bastos

Publisher: Springer Nature

Published: 2021-03-31

Total Pages: 654

ISBN-13: 3030519457

DOWNLOAD EBOOK

This book presents 30 articles on the topic areas discussed at the 30th “International Workshop on Operator Theory and its Applications”, held in Lisbon in July 2019. The contributions include both expository essays and original research papers reflecting recent advances in the traditional IWOTA areas and emerging adjacent fields, as well as the applications of Operator Theory and Functional Analysis. The topics range from C*–algebras and Banach *–algebras, Sturm-Liouville theory, integrable systems, dilation theory, frame theory, Toeplitz, Hankel, and singular integral operators, to questions from lattice, group and matrix theories, complex analysis, harmonic analysis, and function spaces. Given its scope, the book is chiefly intended for researchers and graduate students in the areas of Operator Theory, Functional Analysis, their applications and adjacent fields.


Factorization, Singular Operators and Related Problems

Factorization, Singular Operators and Related Problems

Author: Stefan Samko

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 341

ISBN-13: 9401702276

DOWNLOAD EBOOK

These proceedings comprise a large part of the papers presented at the In ternational Conference Factorization, Singular Operators and related problems, which was held from January 28 to February 1, 2002, at the University of th Madeira, Funchal, Portugal, to mark Professor Georgii Litvinchuk's 70 birth day. Experts in a variety of fields came to this conference to pay tribute to the great achievements of Professor Georgii Litvinchuk in the development of vari ous areas of operator theory. The main themes of the conference were focussed around the theory of singular type operators and factorization problems, but other topics such as potential theory and fractional calculus, to name but a couple, were also presented. The goal of the conference was to bring together mathematicians from var ious fields within operator theory and function theory in order to highlight recent advances in problems many of which were originally studied by Profes sor Litvinchuk and his scientific school. A second aim was to stimulate in ternational collaboration even further and promote the interaction of different approaches in current research in these areas. The Proceedings will be of great interest to researchers in Operator The ory, Real and Complex Analysis, Functional and Harmonic Analysis, Potential Theory, Fractional Calculus and other areas, as well as to graduate students looking for the latest results.