Revolution of Perovskite

Revolution of Perovskite

Author: Narayanasamy Sabari Arul

Publisher: Springer Nature

Published: 2020-01-03

Total Pages: 324

ISBN-13: 9811512671

DOWNLOAD EBOOK

This volume presents advanced synthesis techniques for fabricating Perovskite materials with enhanced properties for applications such as energy storage devices, photovoltaics, electrocatalysis, electronic devices, photocatalysts, sensing, and biomedical instruments. The book attempts to fill a gap in the published literature and provide a detailed reference on Perovskite materials. This book will be of use to graduate students and academic and industrial researchers in the fields of solid-state chemistry, physics, materials science, and chemical engineering.


Intermediate-Temperature Solid Oxide Fuel Cells

Intermediate-Temperature Solid Oxide Fuel Cells

Author: Zongping Shao

Publisher: Springer

Published: 2016-09-12

Total Pages: 271

ISBN-13: 366252936X

DOWNLOAD EBOOK

This book discusses recent advances in intermediate-temperature solid oxide fuel cells (IT-SOFCs), focusing on material development and design, mechanism study, reaction kinetics and practical applications. It consists of five chapters presenting different types of reactions and materials employed in electrolytes, cathodes, anodes, interconnects and sealants for IT-SOFCs. It also includes two chapters highlighting new aspects of these solid oxide fuel cells and exploring their practical applications. This insightful and useful book appeals to a wide readership in various fields, including solid oxide fuel cells, electrochemistry, membranes and ceramics. Zongping Shao is a Professor at the State Key Laboratory of Materials-Oriented Chemical Engineering and the College of Energy, Nanjing University of Technology, China. Moses O. Tade is a Professor at the Department of Chemical Engineering, Curtin University, Australia.


Solid Oxide Fuel Cell Technology

Solid Oxide Fuel Cell Technology

Author: K Huang

Publisher: Elsevier

Published: 2009-07-30

Total Pages: 341

ISBN-13: 1845696514

DOWNLOAD EBOOK

High temperature solid oxide fuel cell (SOFC) technology is a promising power generation option that features high electrical efficiency and low emissions of environmentally polluting gases such as CO2, NOox and SOx. It is ideal for distributed stationary power generation applications where both high-efficiency electricity and high-quality heat are in strong demand. For the past few decades, SOFC technology has attracted intense worldwide R&D effort and, along with polymer electrolyte membrane fuel cell (PEMFC) technology, has undergone extensive commercialization development.This book presents a systematic and in-depth narrative of the technology from the perspective of fundamentals, providing comprehensive theoretical analysis and innovative characterization techniques for SOFC technology. The book initially deals with the basics and development of SOFC technology from cell materials to fundamental thermodynamics, electronic properties of solids and charged particle transport. This coverage is extended with a thorough analysis of such operational features as current flow and energy balance, and on to voltage losses and electrical efficiency. Furthermore, the book also covers the important issues of fuel cell stability and durability with chapters on performance characterization, fuel processing, and electrode poisoning. Finally, the book provides a comprehensive review for SOFC materials and fabrication techniques. A series of useful scientific appendices rounds off the book.Solid oxide fuel cell technology is a standard reference for all those researching this important field as well as those working in the power industry. - Provides a comprehensive review of solid oxide fuel cells from history and design to chemistry and materials development - Presents analysis of operational features including current flow, energy balance, voltage losses and electrical efficiency - Explores fuel cell stability and durability with specific chapters examining performance characterization, fuel processing and electrode poisoning


Physical Chemistry of Ionic Materials

Physical Chemistry of Ionic Materials

Author: Joachim Maier

Publisher: John Wiley & Sons

Published: 2004-08-13

Total Pages: 540

ISBN-13: 0470020210

DOWNLOAD EBOOK

Defects play an important role in determining the properties of solids. This book provides an introduction to chemical bond, phonons, and thermodynamics; treatment of point defect formation and reaction, equilibria, mechanisms, and kinetics; kinetics chapters on solid state processes; and electrochemical techniques and applications. * Offers a coherent description of fundamental defect chemistry and the most common applications. * Up-to-date trends and developments within this field. * Combines electrochemical concepts with aspects of semiconductor physics.


High-temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications

High-temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications

Author: S.C. Singhal

Publisher: Elsevier

Published: 2003-12-08

Total Pages: 423

ISBN-13: 0080508081

DOWNLOAD EBOOK

High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications provides a comprehensive discussion of solid oxide fuel cells (SOFCs). SOFCs are the most efficient devices for the electrochemical conversion of chemical energy of hydrocarbon fuels into electricity, and have been gaining increasing attention for clean and efficient distributed power generation. The book explains the operating principle, cell component materials, cell and stack designs and fabrication processes, cell and stack performance, and applications of SOFCs. Individual chapters are written by internationally renowned authors in their respective fields, and the text is supplemented by a large number of references for further information. The book is primarily intended for use by researchers, engineers, and other technical people working in the field of SOFCs. Even though the technology is advancing at a very rapid pace, the information contained in most of the chapters is fundamental enough for the book to be useful even as a text for SOFC technology at the graduate level.


Perovskite Oxide for Solid Oxide Fuel Cells

Perovskite Oxide for Solid Oxide Fuel Cells

Author: Tatsumi Ishihara

Publisher: Springer Science & Business Media

Published: 2009-06-12

Total Pages: 310

ISBN-13: 0387777083

DOWNLOAD EBOOK

Fuel cell technology is quite promising for conversion of chemical energy of hydrocarbon fuels into electricity without forming air pollutants. There are several types of fuel cells: polymer electrolyte fuel cell (PEFC), phosphoric acid fuel cell (PAFC), molten carbonate fuel cell (MCFC), solid oxide fuel cell (SOFC), and alkaline fuel cell (AFC). Among these, SOFCs are the most efficient and have various advantages such as flexibility in fuel, high reliability, simple balance of plant (BOP), and a long history. Therefore, SOFC technology is attracting much attention as a power plant and is now close to marketing as a combined heat and power generation system. From the beginning of SOFC development, many perovskite oxides have been used for SOFC components; for example, LaMnO -based oxide for the cathode and 3 LaCrO for the interconnect are the most well known materials for SOFCs. The 3 current SOFCs operate at temperatures higher than 1073 K. However, lowering the operating temperature of SOFCs is an important goal for further SOFC development. Reliability, durability, and stability of the SOFCs could be greatly improved by decreasing their operating temperature. In addition, a lower operating temperature is also beneficial for shortening the startup time and decreasing energy loss from heat radiation. For this purpose, faster oxide ion conductors are required to replace the conventional Y O -stabilized ZrO 2 3 2 electrolyte. A new class of electrolytes such as LaGaO is considered to be 3 highly useful for intermediate-temperature SOFCs.


Functional Cobalt Oxides

Functional Cobalt Oxides

Author: Tsuyoshi Takami

Publisher: CRC Press

Published: 2014-08-04

Total Pages: 176

ISBN-13: 9814463337

DOWNLOAD EBOOK

This book explores why cobalt oxides have drawn interest as functional materials due to their peculiar physical properties partially originating from a rich variety of the valence and spin state of cobalt ions. The book starts with the basics of condensed matter physics and advances toward the strong electron correlation system stage. It also provi


Nonstoichiometric Oxides

Nonstoichiometric Oxides

Author: O.T. Soerensen

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 454

ISBN-13: 0323149804

DOWNLOAD EBOOK

Nonstoichiometric Oxides discusses the thermodynamic and structural studies of nonstoichiometric oxides. This eight-chapter text also covers the defect-defect interactions in these compounds. The introductory chapters describe the thermodynamic properties of nonstoichiometric oxides in terms of defect complexes using the classical thermodynamic principles and from a statistical thermodynamics point of view. These chapters also include statistical thermodynamic models that indicate the ordered nonstoichiometric phase range in these oxides. The subsequent chapters examine the transport properties, such as diffusion and electrical conductivity. Diffusion theories and experimental diffusion coefficients for several systems, as well as the electrical properties of the highly defective ionic and mixed oxide conductor, are specifically tackled in these chapters. The concluding chapters present the pertinent results obtained in nonstoichiometric oxide structural studies using high-resolution electron microscopy and X-ray and neutron diffraction. Inorganic chemists and inorganic chemistry teachers and students will greatly appreciate this book.


Nanotechnology and Biosensors

Nanotechnology and Biosensors

Author: Dimitrios P Nikolelis

Publisher: Elsevier

Published: 2018-06-27

Total Pages: 474

ISBN-13: 0128138858

DOWNLOAD EBOOK

Nanotechnology and Biosensors shows how nanotechnology is used to create affordable, mass-produced, portable, small sized biosensors to directly monitor environmental pollutants. In addition, it provides information on their integration into components and systems for mass market applications in food analysis, environmental monitoring and health diagnostics. Nanotechnology has led to a dramatic improvement in the performance, sensitivity and selectivity of biosensors. As metal-oxide and carbon nanostructures, gold and magnetite nanoparticles, and the integration of dendrimers in biosensors using nanotechnology have contributed greatly in making biosensors more effective and affordable on a mass-market level, this book presents a timely resource on the topic. - Highlights nanotechnology-based approaches to the detection of enzyme inhibitors, direct enzymatic and microbial detection of metabolites, and nutrients using biosensors - Includes examples on how nanotechnology has lead to improvements in the construction of portable, selective and sensitive biosensing devices - Offers thorough coverage of biomarker/biosensor interaction for the rapid detection of toxicants and pollutants


Ferroelectric Thin Films

Ferroelectric Thin Films

Author: Carlos Paz de Araujo

Publisher: Taylor & Francis

Published: 1996

Total Pages: 596

ISBN-13: 9782884491891

DOWNLOAD EBOOK

The impetus for the rapid development of thin film technology, relative to that of bulk materials, is its application to a variety of microelectronic products. Many of the characteristics of thin film ferroelectric materials are utilized in the development of these products - namely, their nonvolatile memory and piezoelectric, pyroelectric, and electro-optic properties. It is befitting, therefore, that the first of a set of three complementary books with the general title Integrated Ferroelectric Devices and Technologies focuses on the synthesis of thin film ferroelectric materials and their basic properties. Because it is a basic introduction to the chemistry, materials science, processing, and physics of the materials from which integrated ferroelectrics are made, newcomers to this field as well as veterans will find this book self-contained and invaluable in acquiring the diverse elements requisite to success in their work in this area. It is directed at electronic engineers and physicists as well as process and system engineers, ceramicists, and chemists involved in the research, design, development, manufacturing, and utilization of thin film ferroelectric materials.