Among other things, Aaboe shows us how the Babylonians did calculations, how Euclid proved that there are infinitely many primes, how Ptolemy constructed a trigonometric table in his Almagest, and how Archimedes trisected the angle.
This book offers an accessible and in-depth look at some of the most important episodes of two thousand years of mathematical history. Beginning with trigonometry and moving on through logarithms, complex numbers, infinite series, and calculus, this book profiles some of the lesser known but crucial contributors to modern day mathematics. It is unique in its use of primary sources as well as its accessibility; a knowledge of first-year calculus is the only prerequisite. But undergraduate and graduate students alike will appreciate this glimpse into the fascinating process of mathematical creation. The history of math is an intercontinental journey, and this book showcases brilliant mathematicians from Greece, Egypt, and India, as well as Europe and the Islamic world. Several of the primary sources have never before been translated into English. Their interpretation is thorough and readable, and offers an excellent background for teachers of high school mathematics as well as anyone interested in the history of math.
This book presents an account of selected topics from key mathematical works of medieval Islam, based on the Arabic texts themselves. Many of these works had a great influence on mathematics in Western Europe. Topics covered in the first edition include arithmetic, algebra, geometry, trigonometry, and numerical approximation; this second edition adds number theory and combinatorics. Additionally, the author has included selections from the western regions of medieval Islam—both North Africa and Spain. The author puts the works into their historical context and includes numerous examples of how mathematics interacted with Islamic society.
Algebra, as a subdiscipline of mathematics, arguably has a history going back some 4000 years to ancient Mesopotamia. The history, however, of what is recognized today as high school algebra is much shorter, extending back to the sixteenth century, while the history of what practicing mathematicians call "modern algebra" is even shorter still. The present volume provides a glimpse into the complicated and often convoluted history of this latter conception of algebra by juxtaposing twelve episodes in the evolution of modern algebra from the early nineteenth-century work of Charles Babbage on functional equations to Alexandre Grothendieck's mid-twentieth-century metaphor of a ``rising sea'' in his categorical approach to algebraic geometry. In addition to considering the technical development of various aspects of algebraic thought, the historians of modern algebra whose work is united in this volume explore such themes as the changing aims and organization of the subject as well as the often complex lines of mathematical communication within and across national boundaries. Among the specific algebraic ideas considered are the concept of divisibility and the introduction of non-commutative algebras into the study of number theory and the emergence of algebraic geometry in the twentieth century. The resulting volume is essential reading for anyone interested in the history of modern mathematics in general and modern algebra in particular. It will be of particular interest to mathematicians and historians of mathematics.
Phenomena in the heavens are of great importance to many, and much of the lore of astronomy and astrology dates back to the earliest days of civilisation. The astronomy of the ancients is thus of interest not only as history but also as the basis for much of what is known or believed about the heavens today. This book discusses important topics in Babylonian and Greek astronomy.
Time-honored study by a prominent scholar of mathematics traces decisive epochs from the evolution of mathematical ideas in ancient Egypt and Babylonia to major breakthroughs in the 19th and 20th centuries. 1945 edition.
Making up Numbers: A History of Invention in Mathematics offers a detailed but accessible account of a wide range of mathematical ideas. Starting with elementary concepts, it leads the reader towards aspects of current mathematical research. The book explains how conceptual hurdles in the development of numbers and number systems were overcome in the course of history, from Babylon to Classical Greece, from the Middle Ages to the Renaissance, and so to the nineteenth and twentieth centuries. The narrative moves from the Pythagorean insistence on positive multiples to the gradual acceptance of negative numbers, irrationals and complex numbers as essential tools in quantitative analysis. Within this chronological framework, chapters are organised thematically, covering a variety of topics and contexts: writing and solving equations, geometric construction, coordinates and complex numbers, perceptions of ‘infinity’ and its permissible uses in mathematics, number systems, and evolving views of the role of axioms. Through this approach, the author demonstrates that changes in our understanding of numbers have often relied on the breaking of long-held conventions to make way for new inventions at once providing greater clarity and widening mathematical horizons. Viewed from this historical perspective, mathematical abstraction emerges as neither mysterious nor immutable, but as a contingent, developing human activity. Making up Numbers will be of great interest to undergraduate and A-level students of mathematics, as well as secondary school teachers of the subject. In virtue of its detailed treatment of mathematical ideas, it will be of value to anyone seeking to learn more about the development of the subject.
Biographies of 23 important mathematicians span many centuries and cultures. Historical Learning Tasks provide 21 in-depth treatments of a variety of historical problems.