The papers in this volume provide an exhaustive inventory and description of the most complete sedimentary sequences across the Eocene-Oligocene Boundary (EOB) from all over the world, and present a synthesis of the biotic and chemico-physical events detected at the Eocene-Oligocene transition. The content of the book represents the results achieved by Project no. 174 on ``Geological Events at the Eocene-Oligocene boundary'' of the International Geological Correlation Program, sponsored by UNESCO. The project was carried out over a five year period and has provided a wealth of new and interesting information.
The transition from the Eocene to the Oligocene epochs was the most significant event in earth history since the extinction of dinosaurs. As the first Antarctic ice sheets appeared, major extinctions and faunal turnovers took place on the land and in the sea, eliminating forms adapted to a tropical world and replacing them with the ancestors of most of our modern animal and plant life. Through a detailed study of climatic conditions and of organisms buried in Eocene-Oligocene sediments, this volume shows that the separation of Antarctica from Australia was a critical factor in changing oceanic circulation and ultimately world climate. In this book forty-eight leading scientists examine the full range of Eocene and Oligocene phenomena. Their articles cover nearly every major group of organisms in the ocean and on land and include evidence from paleontology, stable isotopes, sedimentology, seismology, and computer climatic modeling. The volume concludes with an update of the geochronologic framework of the late Paleogene. Originally published in 1992. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
After a decade of new findings and interpretation based on innovative techniques during the 1980s, archaeologists were pretty sure that 38 million years ago the earth still basked in a subtropical "greenhouse" that had lasted since the age of dinosaurs, but 5 million years later there were glaciers in the Antarctic, signalling the beginning of the "icehouse" state that we know now. Here is a summary of the present understanding of the climatic and biological changes, for nonspecialists who have some familiarity with the terms and concepts of archaeology. Paper edition (08091-3), $24. Annotation copyright by Book News, Inc., Portland, OR
Antarctic Climate Evolution is the first book dedicated to furthering knowledge on the evolution of the world's largest ice sheet over its ~34 million year history. This volume provides the latest information on subjects ranging from terrestrial and marine geology to sedimentology and glacier geophysics. - An overview of Antarctic climate change, analyzing historical, present-day and future developments - Contributions from leading experts and scholars from around the world - Informs and updates climate change scientists and experts in related areas of study
The fossil history of plant life in Antarctica is central to our understanding of the evolution of vegetation through geological time and also plays a key role in reconstructing past configurations of the continents and associated climatic conditions. This book provides the only detailed overview of the development of Antarctic vegetation from the Devonian period to the present day, presenting Earth scientists with valuable insights into the break up of the ancient supercontinent of Gondwana. Details of specific floras and ecosystems are provided within the context of changing geological, geographical and environmental conditions, alongside comparisons with contemporaneous and modern ecosystems. The authors demonstrate how palaeobotany contributes to our understanding of the paleoenvironmental changes in the southern hemisphere during this period of Earth history. The book is a complete and up-to-date reference for researchers and students in Antarctic paleobotany and terrestrial paleoecology.
The Late Eocene and the Eocene-Oligocene (E-O) transition mark the most profound oceanographic and climatic changes of the past 50 million years of Earth history, with cooling beginning in the middle Eocene and culminating in the major earliest Oligocene Oi-1 isotopic event. The Late Eocene is characterized by an accelerated global cooling, with a sharp temperature drop near the E-O boundary, and significant stepwise floral and faunal turnovers. These global climate changes are commonly attributed to the expansion of the Antarctic ice cap following its gradual isolation from other continental masses. However, multiple extraterrestrial bolide impacts, possibly related to a comet shower that lasted more than 2 million years, may have played an important role in deteriorating the global climate at that time. This book provides an up-to-date review of what happened on Earth at the end of the Eocene Epoch.
This first IAS Special Publication contains the oral presentations from a special symposium on pelagic sediments held in Zurich in 1973. The aim of the symposium was to bring together sea-borne researchers involved with the Deep Sea Drilling Project and land-locked researchers studying ancient sediments. If you are a member of the International Association of Sedimentologists, for purchasing details, please see: http://www.iasnet.org/publications/details.asp?code=SP1
The role of fossil planktonic foraminifera as markers for biostratigraphical zonation and correlation underpins most drilling of marine sedimentary sequences and is key to hydrocarbon exploration. The first - and only - book to synthesise the whole biostratigraphic and geological usefulness of planktonic foraminifera, Biostratigraphic and Geological Significance of Planktonic Foraminifera unifies existing biostratigraphic schemes and provides an improved correlation reflecting regional biogeographies.Renowned micropaleontologist Marcelle K. Boudagher-Fadel presents a comprehensive analysis of existing data on fossil planktonic foraminifera genera and their phylogenetic evolution in time and space. This important text, now in its Second Edition, is in considerable demand and is now being republished by UCL Press.