Environmental stress screening (ESS) has become one of the primary approaches in the modern electronic industry to precipitate and eliminate latent or hidden defects in electronic products which are introduced mainly during the manufacturing, assembling and packaging processes. Temperature cycling, plus random vibration (shaking and baking) are the primary processes of ESS. This text presents coverage of the subject, from basic concepts and the historical evolution of ESS, to the statistical and physical quantification of ESS.
Includes the binomial tests of comparison and information on Accept-Reject Tests, the Sequential Probability Ratio Test, Bayesian MTBF and Reliability Demonstration Tests, as well as other important accelerated tests such as Arrhenius, Eyriing, Bazovsky, and Inverse Power Law.
When scientifically planned and conducted, burn-in testing offers one of the most effective methods of reliability screening at the component level. By testing individual elements under constant temperature stress, electrical stress, temperature cycling stress, or a combined thermal-electrical stress, burn-in testing can identify discrete faults that may be harder to perceive at the assembly, module, or system level. This book covers all aspects of burn-in testing, from basic definitions to state-of-the-art concepts. Drawing on a broad database of studies, Burn-In Testing emphasizes mathematical and statistical models for quantifying the failure process, optimizing component reliability, and minimizing the total cost. Vividly illustrated with figures, tables and charts, Burn-In Testing includes: * Definitions, classifications, and test conditions * A review of failure patterns during burn-in * Seven general mathematical models including four bathtub curve models * A quick calculation approach for time determination * Representative cost models and burn-in time optimization * The bimodal mixed-exponential life distribution applied to quantify and optimize burn-in * The Mean Residual Life (MRL) concept applied to quantify and optimize burn-in * The Total Time on Test (TTT) transform and the TTT plot applied to quantify and optimize burn-in * Accelerated testing and its quantification * A roadmap for practical applications With each chapter, Burn-In Testing also offers the appropriate FORTRAN code for the processes described. Burn-In Testing is ideal for practicing engineers in the fields of reliability, life testing, and product assurance. It is also useful for upper division and graduate students in these and related fields.
Designing new products and improving existing ones is a continual process. Industrial design engineering is an industrial engineering process applied to product designs that are to be manufactured through techniques of production operations. Excellent industrial design engineering programs are essential for the nation’s industry to succeed in selling useful and ecologically justifiable and usable products on a market flooded with goods and services. This unique text on industrial design engineering integrates basic knowledge, insight, and working methods from industrial engineering and product design subjects. Industrial Design Engineering: Inventive Problem Solving provides a combination of engineering thinking and design skills that give the researchers, practitioners, and students an excellent foundation for participation in product development projects and techniques for establishing and managing such projects. The design principles are presented around examples related to the designing of products, goods, and services. Case studies are developed around real problems and are based on the customer’s needs.
An authoritative guide to optimizing design for manufacturability and reliability from a team of experts Design for Excellence in Electronics Manufacturing is a comprehensive, state-of-the-art book that covers design and reliability of electronics. The authors—noted experts on the topic—explain how using the DfX concepts of design for reliability, design for manufacturability, design for environment, design for testability, and more, reduce research and development costs and decrease time to market and allow companies to confidently issue warranty coverage. By employing the concepts outlined in Design for Excellence in Electronics Manufacturing, engineers and managers can increase customer satisfaction, market share, and long-term profits. In addition, the authors describe the best practices regarding product design and show how the practices can be adapted for different manufacturing processes, suppliers, use environments, and reliability expectations. This important book: Contains a comprehensive review of the design and reliability of electronics Covers a range of topics: establishing a reliability program, design for the use environment, design for manufacturability, and more Includes technical information on electronic packaging, discrete components, and assembly processes Shows how aspects of electronics can fail under different environmental stresses Written for reliability engineers, electronics engineers, design engineers, component engineers, and others, Design for Excellence in Electronics Manufacturing is a comprehensive book that reveals how to get product design right the first time.
A unique book that describes the practical processes necessary to achieve failure free equipment performance, for quality and reliability engineers, design, manufacturing process and environmental test engineers. This book studies the essential requirements for successful product life cycle management. It identifies key contributors to failure in product life cycle management and particular emphasis is placed upon the importance of thorough Manufacturing Process Capability reviews for both in-house and outsourced manufacturing strategies. The readers? attention is also drawn to the many hazards to which a new product is exposed from the commencement of manufacture through to end of life disposal. Revolutionary in focus, as it describes how to achieve failure free performance rather than how to predict an acceptable performance failure rate (reliability technology rather than reliability engineering) Author has over 40 years experience in the field, and the text is based on classroom tested notes from the reliability technology course he taught at Massachusetts Institute of Technology (MIT), USA Contains graphical interpretations of mathematical models together with diagrams, tables of physical constants, case studies and unique worked examples
Next Generation HALT and HASS presents a major paradigm shift from reliability prediction-based methods to discovery of electronic systems reliability risks. This is achieved by integrating highly accelerated life test (HALT) and highly accelerated stress screen (HASS) into a physics-of-failure-based robust product and process development methodology. The new methodologies challenge misleading and sometimes costly mis-application of probabilistic failure prediction methods (FPM) and provide a new deterministic map for reliability development. The authors clearly explain the new approach with a logical progression of problem statement and solutions. The book helps engineers employ HALT and HASS by illustrating why the misleading assumptions used for FPM are invalid. Next, the application of HALT and HASS empirical discovery methods to quickly find unreliable elements in electronics systems gives readers practical insight to the techniques. The physics of HALT and HASS methodologies are highlighted, illustrating how they uncover and isolate software failures due to hardware-software interactions in digital systems. The use of empirical operational stress limits for the development of future tools and reliability discriminators is described. Key features: * Provides a clear basis for moving from statistical reliability prediction models to practical methods of insuring and improving reliability. * Challenges existing failure prediction methodologies by highlighting their limitations using real field data. * Explains a practical approach to why and how HALT and HASS are applied to electronics and electromechanical systems. * Presents opportunities to develop reliability test discriminators for prognostics using empirical stress limits. * Guides engineers and managers on the benefits of the deterministic and more efficient methods of HALT and HASS. * Integrates the empirical limit discovery methods of HALT and HASS into a physics of failure based robust product and process development process.
The international market is very competitive for high-tech manufacturers to day. Achieving competitive quality and reliability for products requires leader ship from the top, good management practices, effective and efficient operation and maintenance systems, and use of appropriate up-to-date engineering de sign tools and methods. Furthermore, manufacturing yield and reliability are interrelated. Manufacturing yield depends on the number of defects found dur ing both the manufacturing process and the warranty period, which in turn determines the reliability. the production of microelectronics has evolved into Since the early 1970's, one of the world's largest manufacturing industries. As a result, an important agenda is the study of reliability issues in fabricating microelectronic products and consequently the systems that employ these products, particularly, the new generation of microelectronics. Such an agenda should include: • the economic impact of employing the microelectronics fabricated by in dustry, • a study of the relationship between reliability and yield, • the progression toward miniaturization and higher reliability, and • the correctness and complexity of new system designs, which include a very significant portion of software.
"Acquaints developers of medical devices with the basic concepts and major issues of medical quality assurance and regulatory documents, describes the requirements listed in these documents, and provides strategies for compliance with these requirements."