This title includes a number of Open Access chapters. The activated sludge process is one of the most versatile and commonly used wastewater treatment systems in the world. In the past, when industrial wastewater treatment focused on removing biological oxygen demand and suspended solids, waste water plants needed different processes and technology
It is necessary to understand the extent of pollution in the environment in terms of the air, water, and soil in order for both humans and animals to live healthier lives. Poor waste treatment or pollution monitoring can lead to massive environmental issues, such as diminishing valuable resources, and cause a significant negative impact on society. Solutions, such as reuse of waste and sustainable waste management, must be explored to prevent these adverse effects. The Handbook of Research on Resource Management for Pollution and Waste Treatment is a collection of innovative research that examines waste and pollution treatment methods that can be adopted at local and international levels and examines appropriate resource management strategies for environmentally related issues. Featuring coverage on a wide range of topics such as soil washing, bioremediation, and runoff handling, this book is ideally designed for environmentalists, engineers, waste management professionals, natural resource regulators, environmental policymakers, scientists, academicians, researchers, and students seeking current research on viable resource management methods for the regeneration of their immediate environment.
In the past, industrial wastewater treatment primarily focused on the removal of BOD and suspended solids. In recent years, however, the focus has changed to aquatic toxicity, priority pollutants, and volatile organics. This required changes in how we design and operate biological treatment plants. Many existing plants must be retrofitted. New approaches to meet new requirements are discussed in detail. The authors, with a combined experience of sixty years, have presented case studies for a wide variety of industrial wastewaters including pulp and paper, food processing, chemical and pharmaceuticals, and textile wastewaters. Data interpretation and process design are developed through the use of seventeen examples. Procedures for the laboratory and pilot plant generation of process design data are presented. Emphasis is placed on meeting the many new regulations governing industrial wastewater discharges.
Recently, research efforts aiming to improve energy efficiency of wastewater treatment processes for large centralized wastewater treatment plants (WWTPs) have been increasing. Global warming impacts, energy sustainability, and biosolids generation are among several key drivers towards the establishment of energy-efficient WWTPs. WWTPs have been recognized as major contributors of greenhouse gas emissions as these are significant energy consumers in the industrialized world. The quantity of biosolids or excess waste activated sludge produced by WWTP will increase in the future due to population growth and this pose environmental concerns and solid waste disposal issues. Due to limited capacity of landfill sites, more stringent environmental legislation, and air pollution from incineration sites, there is a need to rethink the conventional way of dealing with wastewater and the sludge production that comes with it. This book provides an overview of advanced biological, physical and chemical treatment with the aim of reducing the volume of sewage sludge. Provides a comprehensive list of processes aiming at reducing the volume of sewage sludge and increasing biogas production from waste activated sludge. Includes clear process flowsheet showing how the process is modified compared to the conventional waste activated sludge process. Provides current technologies applied on full scale plant as well as methods still under investigation at laboratory scale. Offers data from pilot scale experience of these processes
This book is a milestone in the evolution of wastewater treatment operations. It explains the science of treatment framed within an ethics where wastewater personnel are seen as protectors of public health, preservers of the environment, and stewards of public monies. Written by a former plant operator with a Ph.D., the book presents the fundamental science behind the unit processes in wastewater treatment plants, including biological nutrient removal. In so doing, it challenges longstanding operational doctrines enshrined by habit and tradition, such as being careful not to remove too many influent organics in a primary clarifier for fear of starving the microorganisms in the aeration basin, or using the MLSS concentration to control effluent quality, or cutting the growth rate of microorganisms in anticipation of their slower growth rate in winter. Dispelling much of the prevailing that's-the-way-we've-always-done-it dogma is achieved through an elegant and understandable presentation of the biology, chemistry, and physics that explain the phenomena of wastewater treatment. At the same time, the book is intensely practical. It offers detailed and data-based process control solutions to stabilize plant performance, maintain consistent effluent quality, and reduce energy costs. Powerful, easily implemented statistical techniques are given to unlock the meaning of plant performance data and make informed process control decisions. The book's approach is learning-focused, including numerous examples of a failsafe, foolproof arithmetical method that enables operations professionals to define, set up, and solve problems.
Progress in Environmental Engineering contains theoretical and experimental contributions on water purification, new concepts andmethods of wastewater treatment, and ecological problems in freshwater ecosystems. The issues dealt with in the book include:(i) Causes and control of activated sludge bulking and foaming(ii) e use of new support material
Pollution and its effects on the environment have emerged as critical areas of research within the past 30 years. The Handbook of Environmental Engineering is a collection of methodologies that study the effects of pollution and waste in their three basic forms: gas, solid, and liquid. In Volume 8, Biological Treatment Processes, tried-and-true solutions comprise a “methodology of pollution control”. The distinguished panel of authors contributes detailed chapters, which include topics ranging from treatment by land application, activated sludge processes, and submerged aeration to trickling filters, lagoons, rotating biological contactors, sequencing batch reactors, digestions, and composting. Volume 8 and its sister book - Volume 9: Advanced Biological Treatment Processes – are designed as both basic biological waste treatment textbooks and reference books for advanced undergraduate and graduate students – as well as for designers of waste treatment systems, scientists, and researchers. An indispensable addition to the Humana Press series, Volume 8: Biological Treatment Processes provides an illuminating look at water pollution control and the fascinating evolution of bio-environmental engineering.
Industrial pollution is still a major concern and despite its significance, sound and systematic pollution control efforts are very poorly documented. The character and treatability of industrial wastewaters is highly variable and specific for each industrial activity. Biological treatment with activated sludge is the appropriate technology for industrial wastewaters from several major industrial sectors. Industrial Wastewater Treatment by Activated Sludge deals with the activated sludge treatment of industrial wastewaters by considering conceptual frameworks, methodologies and case studies, in a stepwise manner. The issues related to activated sludge treatment, such as biodegradability based characterization, modeling, assessment of stoichiometric and kinetic parameters and design, as well as the issues of industrial pollution control, e.g. in-plant control, effect of pretreatment, etc. are combined in a way to provide a comprehensive and information-rich view to the reader. By doing so, the book supplies an up-to-date reference for industrial wastewater experts and both graduate and undergraduate students. Industrial Wastewater Treatment by Activated Sludge provides a roadmap, describing the methodologies for the treatment of industrial wastewaters from several major sectors, based on a solid theoretical background. Up to now although valuable separate efforts both on activated sludge and industrial wastewater treatment have been presented, an integrated approach that is crucial to practice has not been available. This gap is filled by this book.
The principle of the conventional activated sludge (CAS) for municipal wastewater treatment is primarily based on biological oxidation by which organic matters are converted to biomass and carbon dioxide. After more than 100 years’ successful application, the CAS process is receiving increasing critiques on its high energy consumption and excessive sludge generation. Currently, almost all municipal wastewater treatment plants with the CAS as a core process are being operated in an energy-negative fashion. To tackle such challenging situations, there is a need to re-examine the present wastewater treatment philosophy by developing and adopting novel process configurations and emerging technologies. The solutions going forward should rely on the ways to improve direct energy recovery from wastewater, while minimizing in-plant energy consumption. This book begins with a critical overview of the energy situation and challenges in current municipal wastewater treatment plants, showing the necessity of the paradigm shift from removal to recovery in terms of energy and resource. As such, the concept of A-B process is discussed in detail in the book. It appears that various A-B process configurations are able to provide possible engineering solutions in which A-stage is primarily designed for COD capture with the aim for direct anaerobic treatment without producing excessive biosludge, while B-stage is designated for nitrogen removal. Making the wastewater treatment energy self-sustainable is obviously of global significance and eventually may become a game changer for the global market of the municipal wastewater reclamation technology. The principal audiences include practitioners, professionals, university researchers, undergraduate and postgraduate students who are interested and specialized in municipal wastewater treatment and process design, environmental engineering, and environmental biotechnology.
Activated sludge is the most widely used biological wastewater treatment process in the world, both for domestic and industrial purposes. This book reviews the major theoretical concepts and practical operational factors, and describes the complexities inherent in the process, which depends on a dense microbial population mixed in wastewater under specific aerobic conditions. It is an ideal reference source for scientists, and a useful troubleshooting guide for practicing engineers and plant operators.