The United States and China are the world's top two energy consumers and, as of 2010, the two largest economies. Consequently, they have a decisive role to play in the world's clean energy future. Both countries are also motivated by related goals, namely diversified energy portfolios, job creation, energy security, and pollution reduction, making renewable energy development an important strategy with wide-ranging implications. Given the size of their energy markets, any substantial progress the two countries make in advancing use of renewable energy will provide global benefits, in terms of enhanced technological understanding, reduced costs through expanded deployment, and reduced greenhouse gas (GHG) emissions relative to conventional generation from fossil fuels. Within this context, the U.S. National Academies, in collaboration with the Chinese Academy of Sciences (CAS) and Chinese Academy of Engineering (CAE), reviewed renewable energy development and deployment in the two countries, to highlight prospects for collaboration across the research to deployment chain and to suggest strategies which would promote more rapid and economical attainment of renewable energy goals. Main findings and concerning renewable resource assessments, technology development, environmental impacts, market infrastructure, among others, are presented. Specific recommendations have been limited to those judged to be most likely to accelerate the pace of deployment, increase cost-competitiveness, or shape the future market for renewable energy. The recommendations presented here are also pragmatic and achievable.
Provides a comprehensive practical review of the new technologies used to obtain hydrogen more efficiently via catalytic, electrochemical, bio- and photohydrogen production. Hydrogen has been gaining more attention in both transportation and stationary power applications. Fuel cell-powered cars are on the roads and the automotive industry is demanding feasible and efficient technologies to produce hydrogen. The principles and methods described herein lead to reasonable mitigation of the great majority of problems associated with hydrogen production technologies. The chapters in this book are written by distinguished authors who have extensive experience in their fields, and readers will have a chance to compare the fundamental production techniques and learn about the pros and cons of these technologies. The book is organized into three parts. Part I shows the catalytic and electrochemical principles involved in hydrogen production technologies. Part II addresses hydrogen production from electrochemically active bacteria (EAB) by decomposing organic compound into hydrogen in microbial electrolysis cells (MECs). The final part of the book is concerned with photohydrogen generation. Recent developments in the area of semiconductor-based nanomaterials, specifically semiconductor oxides, nitrides and metal free semiconductor-based nanomaterials for photocatalytic hydrogen production are extensively discussed.
This Intergovernmental Panel on Climate Change Special Report (IPCC-SRREN) assesses the potential role of renewable energy in the mitigation of climate change. It covers the six most important renewable energy sources - bioenergy, solar, geothermal, hydropower, ocean and wind energy - as well as their integration into present and future energy systems. It considers the environmental and social consequences associated with the deployment of these technologies, and presents strategies to overcome technical as well as non-technical obstacles to their application and diffusion. SRREN brings a broad spectrum of technology-specific experts together with scientists studying energy systems as a whole. Prepared following strict IPCC procedures, it presents an impartial assessment of the current state of knowledge: it is policy relevant but not policy prescriptive. SRREN is an invaluable assessment of the potential role of renewable energy for the mitigation of climate change for policymakers, the private sector, and academic researchers.
The announcement of a hydrogen fuel initiative in the President's 2003 State of the Union speech substantially increased interest in the potential for hydrogen to play a major role in the nation's long-term energy future. Prior to that event, DOE asked the National Research Council to examine key technical issues about the hydrogen economy to assist in the development of its hydrogen R&D program. Included in the assessment were the current state of technology; future cost estimates; CO2 emissions; distribution, storage, and end use considerations; and the DOE RD&D program. The report provides an assessment of hydrogen as a fuel in the nation's future energy economy and describes a number of important challenges that must be overcome if it is to make a major energy contribution. Topics covered include the hydrogen end-use technologies, transportation, hydrogen production technologies, and transition issues for hydrogen in vehicles.
Hydrogen and fuel cells are vital technologies to ensure a secure and CO2-free energy future. Their development will take decades of extensive public and private effort to achieve technology breakthroughs and commercial maturity. Government research programs are indispensable for catalyzing the development process. This report maps the IEA countries' current efforts to research, develop and deploy the interlocking elements that constitute a "hydrogen economy", including CO2 capture and storage when hydrogen is produced out of fossil fuels. It provides an overview of what is being done, and by whom, covering an extensive complexity of national government R & D programs. The survey highlights the potential for exploiting the benefits of the international cooperation. This book draws primarily upon information contributed by IEA governments. In virtually all the IEA countries, important R & D and policy efforts on hydrogen and fuel cells are in place and expanding. Some are fully-integrated, government-funded programs, some are a key element in an overall strategy spread among multiple public and private efforts. The large amount of information provided in this publication reflects the vast array of technologies and logistics required to build the "hydrogen economy."--Publisher description.
Lately it has become a matter of conventional wisdom that hydrogen will solve many of our energy and environmental problems. Nearly everyone -- environmentalists, mainstream media commentators, industry analysts, General Motors, and even President Bush -- seems to expect emission-free hydrogen fuel cells to ride to the rescue in a matter of years, or at most a decade or two. Not so fast, says Joseph Romm. In The Hype about Hydrogen, he explains why hydrogen isn't the quick technological fix it's cracked up to be, and why cheering for fuel cells to sweep the market is not a viable strategy for combating climate change. Buildings and factories powered by fuel cells may indeed become common after 2010, Joseph Romm argues, but when it comes to transportation, the biggest source of greenhouse-gas emissions, hydrogen is unlikely to have a significant impact before 2050. The Hype about Hydrogen offers a hype-free explanation of hydrogen and fuel cell technologies, takes a hard look at the practical difficulties of transitioning to a hydrogen economy, and reveals why, given increasingly strong evidence of the gravity of climate change, neither government policy nor business investment should be based on the belief that hydrogen cars will have meaningful commercial success in the near or medium term. Romm, who helped run the federal government's program on hydrogen and fuel cells during the Clinton administration, provides a provocative primer on the politics, business, and technology of hydrogen and climate protection.
Sustainable Hydrogen Production provides readers with an introduction to the processes and technologies used in major hydrogen production methods. This book serves as a unique source for information on advanced hydrogen generation systems and applications (including integrated systems, hybrid systems, and multigeneration systems with hydrogen production). Advanced and clean technologies are linked to environmental impact issues, and methods for sustainable development are thoroughly discussed. With Earth's fast-growing populations, we face the challenge of rapidly rising energy needs. To balance these we must explore more sustainable methods of energy production. Hydrogen is one key sustainable method because of its versatility. It is a constituent of a large palette of essential materials, chemicals, and fuels. It is a source of power and a source of heat. Because of this versatility, the demand for hydrogen is sure to increase as we aim to explore more sustainable methods of energy. Furthermore, Sustainable Hydrogen Production provides methodologies, models, and analysis techniques to help achieve better use of resources, efficiency, cost-effectiveness, and sustainability. The book is intellectually rich and interesting as well as practical. The fundamental methods of hydrogen production are categorized based on type of energy source: electrical, thermal, photonic, and biochemical. Where appropriate, historical context is introduced. Thermodynamic concepts, illustrative examples, and case studies are used to solve concrete power engineering problems. - Addresses the fundamentals of hydrogen production using electrical, thermal, photonic, and biochemical energies - Presents new models, methods, and parameters for performance assessment - Provides historical background where appropriate - Outlines key connections between hydrogen production methods and environmental impact/sustainable development - Provides illustrative examples, case studies, and study problems within each chapter