Fracture Mechanics

Fracture Mechanics

Author: Robert P. Wei

Publisher: Cambridge University Press

Published: 2010-02-08

Total Pages: 231

ISBN-13: 1139484281

DOWNLOAD EBOOK

Fracture and 'slow' crack growth reflect the response of a material (i.e. its microstructure) to the conjoint actions of mechanical and chemical driving forces and are affected by temperature. There is therefore a need for quantitative understanding and modeling of the influences of chemical and thermal environments and of microstructure, in terms of the key internal and external variables, and for their incorporation into design and probabilistic implications. This text, which the author has used in a fracture mechanics course for advanced undergraduate and graduate students, is based on the work of the author's Lehigh University team whose integrative research combined fracture mechanics, surface and electrochemistry, materials science, and probability and statistics to address a range of fracture safety and durability issues on aluminum, ferrous, nickel, and titanium alloys and ceramics. Examples are included to highlight the approach and applicability of the findings in practical durability and reliability problems.


Deformation and Fracture Mechanics of Engineering Materials

Deformation and Fracture Mechanics of Engineering Materials

Author: Richard W. Hertzberg

Publisher: John Wiley & Sons

Published: 2020-07-08

Total Pages: 800

ISBN-13: 1119670578

DOWNLOAD EBOOK

Deformation and Fracture Mechanics of Engineering Materials, Sixth Edition, provides a detailed examination of the mechanical behavior of metals, ceramics, polymers, and their composites. Offering an integrated macroscopic/microscopic approach to the subject, this comprehensive textbook features in-depth explanations, plentiful figures and illustrations, and a full array of student and instructor resources. Divided into two sections, the text first introduces the principles of elastic and plastic deformation, including the plastic deformation response of solids and concepts of stress, strain, and stiffness. The following section demonstrates the application of fracture mechanics and materials science principles in solids, including determining material stiffness, strength, toughness, and time-dependent mechanical response. Now offered as an interactive eBook, this fully-revised edition features a wealth of digital assets. More than three hours of high-quality video footage helps students understand the practical applications of key topics, supported by hundreds of PowerPoint slides highlighting important information while strengthening student comprehension. Numerous real-world examples and case studies of actual service failures illustrate the importance of applying fracture mechanics principles in failure analysis. Ideal for college-level courses in metallurgy and materials, mechanical engineering, and civil engineering, this popular is equally valuable for engineers looking to increase their knowledge of the mechanical properties of solids.


Atomistics of Fracture

Atomistics of Fracture

Author: R.M. Latanison

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 1043

ISBN-13: 1461335000

DOWNLOAD EBOOK

It is now more than 100 years since certain detrimental effects on the ductility of iron were first associated with the presence of hydrogen. Not only is hydrogen embrittlement still a major industri al problem, but it is safe to say that in a mechanistic sense we still do not know what hydrogen (but not nitrogen or oxygen, for example) does on an atomic scale to induce this degradation. The same applies to other examples of environmentally-induced fracture: what is it about the ubiquitous chloride ion that induces premature catastrophic fracture (stress corrosion cracking) of ordinarily ductile austenitic stainless steels? Why, moreover, are halide ions troublesome but the nitrate or sulfate anions not deleterious to such stainless steels? Likewise, why are some solid metals embrit tled catastrophically by same liquid metals (liquid metal embrit tlement) - copper and aluminum, for example, are embrittled by liquid mercury. In short, despite all that we may know about the materials science and mechanics of fracture on a macroscopic scale, we know little about the atomistics of fracture in the absence of environmental interactions and even less when embrittlement phe nomena such as those described above are involved. On the other hand, it is interesting to note that physical chemists and surface chemists also have interests in the same kinds of interactions that occur on an atomic scale when metals such as nickel or platinum are used, for example, as catalysts for chemical reactions.