Computer Simulation in Chemical Physics

Computer Simulation in Chemical Physics

Author: M.P. Allen

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 522

ISBN-13: 9401116792

DOWNLOAD EBOOK

Computer Simulation in Chemical Physics contains the proceedings of a NATO Advanced Study Institute held at CORISA, Alghero, Sardinia, in September 1992. In the five years that have elapsed since the field was last summarized there have been a number of remarkable advances which have significantly expanded the scope of the methods. Good examples are the Car--Parrinello method, which allows the study of materials with itinerant electrons; the Gibbs technique for the direct simulation of liquid--vapor phase equilibria; the transfer of scaling concepts from simulations of spin models to more complex systems; and the development of the configurational--biased Monte-Carlo methods for studying dense polymers. The field has also been stimulated by an enormous increase in available computing power and the provision of new software. All these exciting developments, an more, are discussed in an accessible way here, making the book indispensable reading for graduate students and research scientists in both academic and industrial settings.


Colloid Chemistry

Colloid Chemistry

Author: Clemens K. Weiss

Publisher: MDPI

Published: 2019-01-15

Total Pages: 233

ISBN-13: 3038974595

DOWNLOAD EBOOK

This book is a printed edition of the Special Issue "Colloid Chemistry" that was published in Gels


Understanding Molecular Simulation

Understanding Molecular Simulation

Author: Daan Frenkel

Publisher: Elsevier

Published: 2001-10-19

Total Pages: 661

ISBN-13: 0080519989

DOWNLOAD EBOOK

Understanding Molecular Simulation: From Algorithms to Applications explains the physics behind the "recipes" of molecular simulation for materials science. Computer simulators are continuously confronted with questions concerning the choice of a particular technique for a given application. A wide variety of tools exist, so the choice of technique requires a good understanding of the basic principles. More importantly, such understanding may greatly improve the efficiency of a simulation program. The implementation of simulation methods is illustrated in pseudocodes and their practical use in the case studies used in the text. Since the first edition only five years ago, the simulation world has changed significantly -- current techniques have matured and new ones have appeared. This new edition deals with these new developments; in particular, there are sections on: - Transition path sampling and diffusive barrier crossing to simulaterare events - Dissipative particle dynamic as a course-grained simulation technique - Novel schemes to compute the long-ranged forces - Hamiltonian and non-Hamiltonian dynamics in the context constant-temperature and constant-pressure molecular dynamics simulations - Multiple-time step algorithms as an alternative for constraints - Defects in solids - The pruned-enriched Rosenbluth sampling, recoil-growth, and concerted rotations for complex molecules - Parallel tempering for glassy Hamiltonians Examples are included that highlight current applications and the codes of case studies are available on the World Wide Web. Several new examples have been added since the first edition to illustrate recent applications. Questions are included in this new edition. No prior knowledge of computer simulation is assumed.


Polymer-Mediated Phase Stability of Colloids

Polymer-Mediated Phase Stability of Colloids

Author: Álvaro González García

Publisher: Springer Nature

Published: 2019-10-28

Total Pages: 162

ISBN-13: 3030336832

DOWNLOAD EBOOK

Colloid–polymer mixtures are subject of intensive research due to their wide range of applicability, for instance in coatings and food-stuffs. This thesis constitutes a fundamental investigation towards a better control over the stability of such suspensions. Through the chapters, different key parameters governing the stability of colloid–polymer mixtures are explored. How the colloid (pigment) shape and the effective polymer-colloid affinity modulate the stability of the suspension are examples of these key parameters. Despise the mostly theoretical results presented, the thesis is written in a format accessible to a broad scientific audience. Some of the equations of state presented might of direct use to experimentalists. Furthermore, new theoretical insights about colloid–polymer mixtures are put forward. These include four-phase coexistences in effective two-component, quantification of depletant partitioning at high colloidal concentrations, multiple re-entrant phase behaviour of the colloidal fluid–solid coexistence, and a condition where polymers are neither depleted nor adsorbed from/to the colloidal surface.


Future Directions in Polymer Colloids

Future Directions in Polymer Colloids

Author: Mohamed S. El-Aasser

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 394

ISBN-13: 9400936850

DOWNLOAD EBOOK

Future Directions In Polymer Colloids Hohamed S. EI-Aasser, and Robert H. Fitch (editors) It is appropriate that the first NATO-Advanced Research Workshop on "FUTURE DIRECTIONS IN POLYMER COLLOIDS" was held approximately fifty years after the first synthetic polymer latexes were made on a commercial scale during the mid-1930s. Since that time the field of what is now known as polymer colloids has been evolving rapidly, not only on the practical level, but also on the scientific and engineering levels. Billions of pounds of copolymers are manufactured annually by means of the emulsion polymerization process. "Commodity" polymers as well "specialty" polymers are prepared today for use in a wide variety of applications: synthetic rubber, floor coatings, paints, adhesives, binders for non-woven fabrics, high-impact polymers latex foam, additives for construction materials such as cement and concrete, and rheological modifiers. They are also used in numerous biomedical applications: such as diagnostic tests, immunoassays, biological cell-labeling, (identi fication and separation), and drug delivery systems. Small quantities of monodisperse polymer colloids are used as size calibration standards and find extensive use as model colloids to test theories in colloids surface and rheological studies. Advances have been made in our understanding of the mechanism and kinetics of the emulsion polymerization process as well as the stability of polymer colloids. Equal advances were made in engineering areas related to polymer colloids, e. g. modeling of batch, semi-continuous and continuous emulsion polymerization and copolymer ization processes.


Smart Colloidal Materials

Smart Colloidal Materials

Author: Walter Richtering

Publisher: Springer

Published: 2006-08-29

Total Pages: 192

ISBN-13: 3540327029

DOWNLOAD EBOOK

This volume contains selected papers presented at the 42nd Biennial Meeting of the Kolloid-Gesellschaft held at the RWTH Aachen University September 26-28, 2005. The contributions in this volume represent the diversity of research topics in colloid and polymer science. They include the investigation of synthesis and properties of advanced temperature sensitive particles and their biomedical applications, drug delivery systems, foams, capsules, vesicles and gels, polyelectrolytes, nanoparticles surfactants and hybrid materials.


Colloidal Dispersions

Colloidal Dispersions

Author: William Bailey Russel

Publisher: Cambridge University Press

Published: 1991

Total Pages: 548

ISBN-13: 9780521426008

DOWNLOAD EBOOK

This book covers the physical side of colloidal science from the individual forces acting between particles smaller than a micrometer that are suspended in a liquid, through the resulting equilibrium and dynamic properties. A variety of internal forces both attractive and repulsive act in conjunction with Brownian motion and the balance between them all decides the phase behaviour. On top of this various external fields, such as gravity or electromagnetic fields, diffusion and non-Newtonian rheology produce complex effects, each of which is of important scientific and technological interest. The authors aim to impart a sound, quantitative understanding based on fundamental theory and experiments with well-characterised model systems. This broad grasp of the fundamentals lends insight and helps to develop the intuitive sense needed to isolate essential features of the technological problems and design critical experiments. The main prerequisites for understanding the book are basic fluid mechanics, statistical mechanics and electromagnetism, though self contained reviews of each subject are provided at appropriate points. Some facility with differential equations is also necessary. Exercises are included at the end of each chapter, making the work suitable as a textbook for graduate courses in chemical engineering or applied mathematics. It will also be useful as a reference for individuals in academia or industry undertaking research in colloid science.


Microrheology

Microrheology

Author: Eric M. Furst

Publisher: Oxford University Press

Published: 2017-09-29

Total Pages: 473

ISBN-13: 0192538608

DOWNLOAD EBOOK

This book presents a comprehensive overview of microrheology, emphasizing the underlying theory, practical aspects of its implementation, and current applications to rheological studies in academic and industrial laboratories. The field of microrheology continues to evolve rapidly, and applications are expanding at an accelerating pace. Readers will learn about the key methods and techniques, including important considerations to be made with respect to the materials most amenable to microrheological characterization and pitfalls to avoid in measurements and analysis. Microrheological measurements can be as straightforward as video microscopy recordings of colloidal particle Brownian motion; these simple experiments can yield rich rheological information. Microrheology covers topics ranging from active microrheology using laser or magnetic tweezers to passive microrheology, such as multiple particle tracking and tracer particle microrheology with diffusing wave spectroscopy. Overall, this introduction to microrheology informs those seeking to incorporate these methods into their own research, or simply survey and understand the growing body of microrheology literature. Many sources of archival literature are consolidated into an accessible volume for rheologist and non-specialist alike. The small sample sizes of many microrheology experiments have made it an important method for studying emerging and scarce biological materials, making this characterization method suitable for application in a variety of fields.