Enterprise Data Governance

Enterprise Data Governance

Author: Pierre Bonnet

Publisher: John Wiley & Sons

Published: 2013-03-04

Total Pages: 264

ISBN-13: 1118622537

DOWNLOAD EBOOK

In an increasingly digital economy, mastering the quality of data is an increasingly vital yet still, in most organizations, a considerable task. The necessity of better governance and reinforcement of international rules and regulatory or oversight structures (Sarbanes Oxley, Basel II, Solvency II, IAS-IFRS, etc.) imposes on enterprises the need for greater transparency and better traceability of their data. All the stakeholders in a company have a role to play and great benefit to derive from the overall goals here, but will invariably turn towards their IT department in search of the answers. However, the majority of IT systems that have been developed within businesses are overly complex, badly adapted, and in many cases obsolete; these systems have often become a source of data or process fragility for the business. It is in this context that the management of ‘reference and master data’ or Master Data Management (MDM) and semantic modeling can intervene in order to straighten out the management of data in a forward-looking and sustainable manner. This book shows how company executives and IT managers can take these new challenges, as well as the advantages of using reference and master data management, into account in answering questions such as: Which data governance functions are available? How can IT be better aligned with business regulations? What is the return on investment? How can we assess intangible IT assets and data? What are the principles of semantic modeling? What is the MDM technical architecture? In these ways they will be better able to deliver on their responsibilities to their organizations, and position them for growth and robust data management and integrity in the future.


Data Governance

Data Governance

Author: John Ladley

Publisher: Academic Press

Published: 2019-11-08

Total Pages: 352

ISBN-13: 0128158328

DOWNLOAD EBOOK

Managing data continues to grow as a necessity for modern organizations. There are seemingly infinite opportunities for organic growth, reduction of costs, and creation of new products and services. It has become apparent that none of these opportunities can happen smoothly without data governance. The cost of exponential data growth and privacy / security concerns are becoming burdensome. Organizations will encounter unexpected consequences in new sources of risk. The solution to these challenges is also data governance; ensuring balance between risk and opportunity. Data Governance, Second Edition, is for any executive, manager or data professional who needs to understand or implement a data governance program. It is required to ensure consistent, accurate and reliable data across their organization. This book offers an overview of why data governance is needed, how to design, initiate, and execute a program and how to keep the program sustainable. This valuable resource provides comprehensive guidance to beginning professionals, managers or analysts looking to improve their processes, and advanced students in Data Management and related courses. With the provided framework and case studies all professionals in the data governance field will gain key insights into launching successful and money-saving data governance program. - Incorporates industry changes, lessons learned and new approaches - Explores various ways in which data analysts and managers can ensure consistent, accurate and reliable data across their organizations - Includes new case studies which detail real-world situations - Explores all of the capabilities an organization must adopt to become data driven - Provides guidance on various approaches to data governance, to determine whether an organization should be low profile, central controlled, agile, or traditional - Provides guidance on using technology and separating vendor hype from sincere delivery of necessary capabilities - Offers readers insights into how their organizations can improve the value of their data, through data quality, data strategy and data literacy - Provides up to 75% brand-new content compared to the first edition


Non-Invasive Data Governance

Non-Invasive Data Governance

Author: Robert S. Seiner

Publisher: Technics Publications

Published: 2014-09-01

Total Pages: 147

ISBN-13: 1634620453

DOWNLOAD EBOOK

Data-governance programs focus on authority and accountability for the management of data as a valued organizational asset. Data Governance should not be about command-and-control, yet at times could become invasive or threatening to the work, people and culture of an organization. Non-Invasive Data Governance™ focuses on formalizing existing accountability for the management of data and improving formal communications, protection, and quality efforts through effective stewarding of data resources. Non-Invasive Data Governance will provide you with a complete set of tools to help you deliver a successful data governance program. Learn how: • Steward responsibilities can be identified and recognized, formalized, and engaged according to their existing responsibility rather than being assigned or handed to people as more work. • Governance of information can be applied to existing policies, standard operating procedures, practices, and methodologies, rather than being introduced or emphasized as new processes or methods. • Governance of information can support all data integration, risk management, business intelligence and master data management activities rather than imposing inconsistent rigor to these initiatives. • A practical and non-threatening approach can be applied to governing information and promoting stewardship of data as a cross-organization asset. • Best practices and key concepts of this non-threatening approach can be communicated effectively to leverage strengths and address opportunities to improve.


Data Governance: The Definitive Guide

Data Governance: The Definitive Guide

Author: Evren Eryurek

Publisher: "O'Reilly Media, Inc."

Published: 2021-03-08

Total Pages: 254

ISBN-13: 1492063460

DOWNLOAD EBOOK

As your company moves data to the cloud, you need to consider a comprehensive approach to data governance, along with well-defined and agreed-upon policies to ensure you meet compliance. Data governance incorporates the ways that people, processes, and technology work together to support business efficiency. With this practical guide, chief information, data, and security officers will learn how to effectively implement and scale data governance throughout their organizations. You'll explore how to create a strategy and tooling to support the democratization of data and governance principles. Through good data governance, you can inspire customer trust, enable your organization to extract more value from data, and generate more-competitive offerings and improvements in customer experience. This book shows you how. Enable auditable legal and regulatory compliance with defined and agreed-upon data policies Employ better risk management Establish control and maintain visibility into your company's data assets, providing a competitive advantage Drive top-line revenue and cost savings when developing new products and services Implement your organization's people, processes, and tools to operationalize data trustworthiness.


Enterprise Data at Huawei

Enterprise Data at Huawei

Author: Yun Ma

Publisher: Springer Nature

Published: 2021-11-22

Total Pages: 255

ISBN-13: 981166823X

DOWNLOAD EBOOK

This book systematically introduces the data governance and digital transformation at Huawei, from the perspectives of technology, process, management, and so on. Huawei is a large global enterprise engaging in multiple types of business in over 170 countries and regions. Its differentiated operation is supported by an enterprise data foundation and corresponding data governance methods. With valuable experience, methodology, standards, solutions, and case studies on data governance and digital transformation, enterprise data at Huawei is ideal for readers to learn and apply, as well as to get an idea of the digital transformation journey at Huawei. This book is organized into four parts and ten chapters. Based on the understanding of “the cognitive world of machines,” the book proposes the prospects for the future of data governance, as well as the imaginations about AI-based governance, data sovereignty, and building a data ecosystem.


MASTER DATA MANAGEMENT AND DATA GOVERNANCE, 2/E

MASTER DATA MANAGEMENT AND DATA GOVERNANCE, 2/E

Author: Alex Berson

Publisher: McGraw Hill Professional

Published: 2010-12-06

Total Pages: 537

ISBN-13: 0071744592

DOWNLOAD EBOOK

The latest techniques for building a customer-focused enterprise environment "The authors have appreciated that MDM is a complex multidimensional area, and have set out to cover each of these dimensions in sufficient detail to provide adequate practical guidance to anyone implementing MDM. While this necessarily makes the book rather long, it means that the authors achieve a comprehensive treatment of MDM that is lacking in previous works." -- Malcolm Chisholm, Ph.D., President, AskGet.com Consulting, Inc. Regain control of your master data and maintain a master-entity-centric enterprise data framework using the detailed information in this authoritative guide. Master Data Management and Data Governance, Second Edition provides up-to-date coverage of the most current architecture and technology views and system development and management methods. Discover how to construct an MDM business case and roadmap, build accurate models, deploy data hubs, and implement layered security policies. Legacy system integration, cross-industry challenges, and regulatory compliance are also covered in this comprehensive volume. Plan and implement enterprise-scale MDM and Data Governance solutions Develop master data model Identify, match, and link master records for various domains through entity resolution Improve efficiency and maximize integration using SOA and Web services Ensure compliance with local, state, federal, and international regulations Handle security using authentication, authorization, roles, entitlements, and encryption Defend against identity theft, data compromise, spyware attack, and worm infection Synchronize components and test data quality and system performance


The Data Governance Imperative

The Data Governance Imperative

Author: Steve Sarsfield

Publisher: IT Governance Publishing

Published: 2009-04-23

Total Pages: 162

ISBN-13: 1849280134

DOWNLOAD EBOOK

This practical book covers both strategies and tactics around managing a data governance initiative to help make the most of your data.


Enterprise Master Data Management

Enterprise Master Data Management

Author: Allen Dreibelbis

Publisher: Pearson Education

Published: 2008-06-05

Total Pages: 833

ISBN-13: 0132704277

DOWNLOAD EBOOK

The Only Complete Technical Primer for MDM Planners, Architects, and Implementers Companies moving toward flexible SOA architectures often face difficult information management and integration challenges. The master data they rely on is often stored and managed in ways that are redundant, inconsistent, inaccessible, non-standardized, and poorly governed. Using Master Data Management (MDM), organizations can regain control of their master data, improve corresponding business processes, and maximize its value in SOA environments. Enterprise Master Data Management provides an authoritative, vendor-independent MDM technical reference for practitioners: architects, technical analysts, consultants, solution designers, and senior IT decisionmakers. Written by the IBM ® data management innovators who are pioneering MDM, this book systematically introduces MDM’s key concepts and technical themes, explains its business case, and illuminates how it interrelates with and enables SOA. Drawing on their experience with cutting-edge projects, the authors introduce MDM patterns, blueprints, solutions, and best practices published nowhere else—everything you need to establish a consistent, manageable set of master data, and use it for competitive advantage. Coverage includes How MDM and SOA complement each other Using the MDM Reference Architecture to position and design MDM solutions within an enterprise Assessing the value and risks to master data and applying the right security controls Using PIM-MDM and CDI-MDM Solution Blueprints to address industry-specific information management challenges Explaining MDM patterns as enablers to accelerate consistent MDM deployments Incorporating MDM solutions into existing IT landscapes via MDM Integration Blueprints Leveraging master data as an enterprise asset—bringing people, processes, and technology together with MDM and data governance Best practices in MDM deployment, including data warehouse and SAP integration


Disrupting Data Governance

Disrupting Data Governance

Author: Laura Madsen

Publisher:

Published: 2019-12-06

Total Pages: 0

ISBN-13: 9781634626521

DOWNLOAD EBOOK

Data governance is broken. It's time we fix it. Why is data governance so ineffective? The truth is data governance programs aren't designed for the way we run our data teams they aren't even designed for a modern organization at all. They were designed when reports still came through inter-office mail. The flow of data into within and out of today's organizations is a tsunami breaking through rigid data governance methods. Yet our programs still rely on that command and control approach. Have you ever tried to control a tsunami? Every organization that uses data knows that they need a data governance program. Data literacy efforts and legislation like GDPR have become the bellwethers for our governance functions. But we still sit in data governance meetings without enough people and too many questions to move things forward. There's no agility to the program because we imply a degree of frailty to the data that doesn't exist. We continue to insist on archaic methods that bring no value to our organizations. Achieving deep insights from data can't happen without good governance practices. Laura Madsen shows you how to redefine governance for the modern age. With a casual witty style Madsen taps on her decades of experience shares interviews with other best-in-field experts and grounds her perspective in research. Witness where it all fell apart challenge long-held beliefs and commit to a fundamental shift--that governance is not about stopping or preventing usage but about supporting the usage of data. Be able to bring back trust and value to our data governance functions and learn the: People-driven approach to governance Processes that support the tsunami of data Cutting edge technology that's enabling data governance


DAMA-DMBOK

DAMA-DMBOK

Author: Dama International

Publisher:

Published: 2017

Total Pages: 628

ISBN-13: 9781634622349

DOWNLOAD EBOOK

Defining a set of guiding principles for data management and describing how these principles can be applied within data management functional areas; Providing a functional framework for the implementation of enterprise data management practices; including widely adopted practices, methods and techniques, functions, roles, deliverables and metrics; Establishing a common vocabulary for data management concepts and serving as the basis for best practices for data management professionals. DAMA-DMBOK2 provides data management and IT professionals, executives, knowledge workers, educators, and researchers with a framework to manage their data and mature their information infrastructure, based on these principles: Data is an asset with unique properties; The value of data can be and should be expressed in economic terms; Managing data means managing the quality of data; It takes metadata to manage data; It takes planning to manage data; Data management is cross-functional and requires a range of skills and expertise; Data management requires an enterprise perspective; Data management must account for a range of perspectives; Data management is data lifecycle management; Different types of data have different lifecycle requirements; Managing data includes managing risks associated with data; Data management requirements must drive information technology decisions; Effective data management requires leadership commitment.