Introduction to Enhanced Recovery Methods for Heavy Oil and Tar Sands

Introduction to Enhanced Recovery Methods for Heavy Oil and Tar Sands

Author: James G. Speight

Publisher: Gulf Professional Publishing

Published: 2016-02-24

Total Pages: 577

ISBN-13: 0128018755

DOWNLOAD EBOOK

Introduction to Enhanced Recovery Methods for Heavy Oil and Tar Sands, Second Edition, explores the importance of enhanced oil recovery (EOR) and how it has grown in recent years thanks to the increased need to locate unconventional resources such as heavy oil and shale. Unfortunately, petroleum engineers and managers aren't always well-versed in the enhancement methods that are available when needed or the most economically viable solution to maximize their reservoir's productivity. This revised new edition presents all the current methods of recovery available, including the pros and cons of each. Expanded and updated as a great preliminary text for the newcomer to the industry or subject matter, this must-have EOR guide teaches all the basics needed, including all thermal and non-thermal methods, along with discussions of viscosity, sampling, and the technologies surrounding offshore applications. - Enables users to quickly learn how to choose the most efficient recovery method for their reservoir while evaluating economic conditions - Presents the differences between each method of recovery with newly added real-world case studies from around the world - Helps readers stay competitive with the growing need of extracting unconventional resources with new content on how these complex reservoirs interact with injected reservoir fluids


Enhanced Oil Recovery

Enhanced Oil Recovery

Author: Marcel Latil

Publisher: Editions TECHNIP

Published: 1980

Total Pages: 258

ISBN-13: 9782710810506

DOWNLOAD EBOOK

Contents : 1. Factors common to all enhanced recovery methods. 2. Water injection. 3. Gas injection in an oil reservoir (immiscible displacement). 4. Miscible drive. 5. Gas recycling in gas-condensate reservoirs. 6. Thermal recovery methods. 7. Other methods of enhanced recovery. References. Index.


Heavy Crude Oil Recovery

Heavy Crude Oil Recovery

Author: E. Okandan

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 431

ISBN-13: 9400961405

DOWNLOAD EBOOK

Within the last 10 years the world has come to a point where the easily explorable oil deposits have now been found, and it is anticipated that such deposits will be depleted by the beginning of the Twenty-first Century. However, the increasing demand of man kind for energy has caused technologists to look into ways of find ing new sources or to reevaluat:e unconventional sources which, in the past, have not been economical. In this respect, heavy crude and tar sand oils are becoming important in fulfilling the world's energy requirements. What are heavy crude and tar sand oils? There is still some confusion as to their definitions, inasmuch as they vary among organizations and countries. In an effort to set agreed meanings, UNITAR, in a meeting in February 1982 in Venezuela, proposed the following definitions (see also Table 1): 1. Heavy crude oil and tar sand oil are petroleum or petroleum like liquids or semi-solids naturally occurring in porous media. The porous media are sands, sandstone, and carbonate rocks. 2. These oils will be characterized by viscosity and density. Viscosity will be used to define heavy crude oil and tar sand oil, and density (oAPI) will be used when viscosity measurements are not available. 3. Heavy crude oil has a gas-free viscosity of 100-10000 mPa.s (cp) 3 o at reservoir temperatures, or a density of 943 kg/m (20 API) 3 o o to 1000 kg/m (10 API) at 15.6 C and at atmospheric oressure.


Microbial Enhanced Oil Recovery

Microbial Enhanced Oil Recovery

Author: E.C. Donaldson

Publisher: Newnes

Published: 1989-02-01

Total Pages: 243

ISBN-13: 0080868800

DOWNLOAD EBOOK

The use of microorganisms and their metabolic products to stimulate oil production is currently receiving renewed interest worldwide. This technique involves the injection of selected microorganisms into the reservoir and the subsequent stimulation and transportation of their in situ growth products, in order that their presence will aid in further reduction of residual oil left in the reservoir after secondary recovery is exhausted. Although unlikely to replace conventional microbial enhanced oil recovery, this unique process seems superior in many respects. Self-duplicating units, namely the bacteria cells, are injected into the reservoir and by their in situ multiplication they magnify beneficial effects.This new approach to enhancement of oil recovery was initiated in 1980 and the first results were published in the proceedings of two international conferences. This book evolved from these conferences, and was designed to encompass all current aspects of microbial enhanced oil recovery: the development of specific cultures, increase of the population for field application, various methods for field applications and the results, and the environmental concerns associated with this newly developed technology. It provides a comprehensive treatise of the subject, and is arranged to show the laboratory development of microbes suited to microbial enhanced oil recovery and the perpetuation of the special cultures in a petroleum reservoir. Thus, this book has specific usefulness in the laboratory, the oilfield and the classroom. Although not written as a text book, it can be used as a reference volume for graduate studies in enhanced oil recovery.


Heavy Oil Recovery and Upgrading

Heavy Oil Recovery and Upgrading

Author: James G. Speight

Publisher: Gulf Professional Publishing

Published: 2019-02-28

Total Pages: 842

ISBN-13: 0128130261

DOWNLOAD EBOOK

Heavy Oil Recovery and Upgrading covers properties, factors, methods and all current and upcoming processes, giving engineers, new and experienced, the full spectrum of recovery choices, including SAGD, horizontal well technology, and hybrid approaches. Moving on to the upgrading and refining of the product, the book also includes information on in situ upgrading, refining options, and hydrogen production. Rounding out with environmental effects, management methods on refinery waste, and the possible future configurations within the refinery, this book provides engineers with a single source to make decisions and manage the full range of challenges. - Presents the properties, mechanisms, screening criteria and field applications for heavy oil enhanced recovery projects - Includes current upgrading options and future methods for refining heavy oil development - Fills in the gaps between literature and practical application for everyday industry reference


Chemical Enhanced Oil Recovery

Chemical Enhanced Oil Recovery

Author: Patrizio Raffa

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2019-07-22

Total Pages: 260

ISBN-13: 3110640430

DOWNLOAD EBOOK

This book aims at presenting, describing, and summarizing the latest advances in polymer flooding regarding the chemical synthesis of the EOR agents and the numerical simulation of compositional models in porous media, including a description of the possible applications of nanotechnology acting as a booster of traditional chemical EOR processes. A large part of the world economy depends nowadays on non-renewable energy sources, most of them of fossil origin. Though the search for and the development of newer, greener, and more sustainable sources have been going on for the last decades, humanity is still fossil-fuel dependent. Primary and secondary oil recovery techniques merely produce up to a half of the Original Oil In Place. Enhanced Oil Recovery (EOR) processes are aimed at further increasing this value. Among these, chemical EOR techniques (including polymer flooding) present a great potential in low- and medium-viscosity oilfields. • Describes recent advances in chemical enhanced oil recovery. • Contains detailed description of polymer flooding and nanotechnology as promising boosting tools for EOR. • Includes both experimental and theoretical studies. About the Authors Patrizio Raffa is Assistant Professor at the University of Groningen. He focuses on design and synthesis of new polymeric materials optimized for industrial applications such as EOR, coatings and smart materials. He (co)authored about 40 articles in peer reviewed journals. Pablo Druetta works as lecturer at the University of Groningen (RUG) and as engineering consultant. He received his Ph.D. from RUG in 2018 and has been teaching at a graduate level for 15 years. His research focus lies on computational fluid dynamics (CFD).