Plasticity and impact dynamics are two important areas in engineering practice, which includes structural engineering, crashworthiness, metal formation and new structural materials. The application of engineering plasticity and impact dynamics has resulted in significant achievements both technically and economically.This book presents the state-of-the-art developments in the above fields. It contains over 15 chapters written by experts in engineering plasticity and impact dynamics. It covers a wide range of theoretical developments and engineering applications, including fundamentals of energy absorption, applications of new materials, crashworthiness, bifurcation in plasticity, microdynamics, penetration, wave propagation, fracture, laser impact and particle-impact-induced erosion.
Plasticity and impact dynamics are two important areas in engineering practice, which includes structural engineering, crashworthiness, metal formation and new structural materials. The application of engineering plasticity and impact dynamics has resulted in significant achievements both technically and economically.This book presents the state-of-the-art developments in the above fields. It contains over 15 chapters written by experts in engineering plasticity and impact dynamics. It covers a wide range of theoretical developments and engineering applications, including fundamentals of energy absorption, applications of new materials, crashworthiness, bifurcation in plasticity, microdynamics, penetration, wave propagation, fracture, laser impact and particle-impact-induced erosion.
This book presents the joint post-proceedings of three International Workshops held as part of the 12th ACM Conference on Hypertext and Hypermedia in Aarhus, Denmark in August 2001. The 28 revised full papers presented were carefully refereed and selected during two rounds of reviewing and revision. In accordance with the workshop topics, the papers are organized in sections on open hypermedia systems, structural computing, and adaptive hypermedia.
From the point of view of mechanics, this monograph systematically demonstrates the theory of plastic bending and its engineering applications; most of the contents of the book are based on the authors' research in the past decade. The monograph not only expounds the contributions of the authors to the fundamental theory of plastic bending, but also presents various applications of the theory in sheet metal forming, particularly in the analysis and prediction of springback and wrinkling of strips and plates subjected to bending or stamping. In addition to theoretical modelling, attention has also been paid to the development of related numerical methods; comparisons with experimental results are also presented.
"This book presents a global perspective on blended learning and augments that perspective with examples and applications from leading scholars around the world"--Provided by publisher.
Introducing the basics of solid mechanics to engineers from a practical point of view, this book presents the theory of solid mechanics, solution methodology and direct engineering applications as an organic whole.
Precision machining is an essential manufacturing process to achieve high dimensional accuracy and high surface integrity of functional components for various technological applications, such as those in aeronautical, biomedical, mechanical, metrological, mechatronic, nano-technological and microscopy industries. To achieve a satisfactory operation of precision machining, however, one must have a deep understanding of the setting and control of machining conditions, mechanisms of material removal and effectiveness of the cutting tools. As a result, a quality precision machining requires a comprehensive integration of the development of machine tools, the improvement of machining methods and the wise application of materials science and engineering and mechanics of solids. recent research, development and applications on the precision machining of advanced materials. It covers three major aspects of precision machining, i.e., mechanisms of machining and material removal, friction and wear problems associated with cutting tools and development of new methods and new tools for more cost-effective processes. machining methods and conditions to achieve high surface integrity and accuracy. For example, silicon monocrystalls are brittle in nature and are chemically sensitive to machining environment. Composites have at least two phases with different mechanical properties. These need to be considered carefully in machining as otherwise unacceptable damage will take place in either the workpiece or the cutting tool or in both. The papers included in this volume deal with a wide range of difficult-to-machine materials, such as silicon, glass, carbon-fibre reinforced composites, CVD-SiC film and ceramics. The methodologies presented address both industrial production problems and fundamental issues, including polishing, grinding, electrochemical discharge machining, abrasive jet machining, laser sintering, chemo- mechanical machining, drilling, fractal analysis, molecular dynamics analysis and finite element simulation. The volume should therefore be of interest to production and research engineers, research students and academics in the area.
Rich in detail, Hippocampal Microcircuits: A Computational Modeler’s Resource Book provides succinct and focused reviews of experimental results. It is an unparalleled resource of data and methodology that will be invaluable to anyone wishing to develop computational models of the microcircuits of the hippocampus. The editors have divided the material into two thematic areas. Covering the subject’s experimental background, leading neuroscientists discuss the morphological, physiological and molecular characteristics as well as the connectivity and synaptic properties of the various cell types found in the hippocampus. Here, ensemble activity, related to behavior, on the part of morphologically identified neurons in anesthetized and freely moving animals, lead to insights into the functions of hippocampal areas. In the second section, on computational analysis, computational neuroscientists present models of hippocampal microcircuits at various levels of detail, including single-cell and network levels. A full chapter is devoted to the single-neuron and network simulation environments currently used by computational neuroscientists in developing their models. In addition to the above, the chapters also identify outstanding questions and areas in need of further clarification that will guide future research by computational neuroscientists.