This book presents state-of-the-art probabilistic methods for the reliability analysis and design of engineering products and processes. It seeks to facilitate practical application of probabilistic analysis and design by providing an authoritative, in-depth, and practical description of what probabilistic analysis and design is and how it can be implemented. The text is packed with many practical engineering examples (e.g., electric power transmission systems, aircraft power generating systems, and mechanical transmission systems) and exercise problems. It is an up-to-date, fully illustrated reference suitable for both undergraduate and graduate engineering students, researchers, and professional engineers who are interested in exploring the fundamentals, implementation, and applications of probabilistic analysis and design methods.
This book introduces the fundamentals of probability, statistical, and reliability concepts, the classical methods of uncertainty quantification and analytical reliability analysis, and the state-of-the-art approaches of design optimization under uncertainty (e.g., reliability-based design optimization and robust design optimization). The topics include basic concepts of probability and distributions, uncertainty quantification using probabilistic methods, classical reliability analysis methods, time-variant reliability analysis methods, fundamentals of deterministic design optimization, reliability-based design optimization, robust design optimization, other methods of design optimization under uncertainty, and engineering applications of design optimization under uncertainty.
IoT and Spacecraft Informatics provides the theory and applications of IoT systems in the design, development and operation of spacecraft. Sections present a high-level overview of IoT and introduce key concepts needed to successfully design IoT solutions, key technologies, protocols, and technical building blocks that combine into complete IoT solutions. The book features the latest advances, findings and state-of-the-art in research, case studies, development and implementation of IoT technologies for spacecraft and space systems. In addition, it concentrates on different aspects and techniques to achieve automatic control of spacecraft. This book is for researchers, PhD students, engineers and specialists in aerospace engineering as well as those in computer science, computer engineering or mechatronics. - Presents state-of-the-art research on IoT and spacecraft technology - Provides artificial intelligence-based solutions and robotics for space exploration applications - Introduces new applications and case studies of IoT and spacecraft informatics
This book proposes the formulation of an efficient methodology that estimates energy system uncertainty and predicts Remaining Useful Life (RUL) accurately with significantly reduced RUL prediction uncertainty. Renewable and non-renewable sources of energy are being used to supply the demands of societies worldwide. These sources are mainly thermo-chemo-electro-mechanical systems that are subject to uncertainty in future loading conditions, material properties, process noise, and other design parameters.It book informs the reader of existing and new ideas that will be implemented in RUL prediction of energy systems in the future. The book provides case studies, illustrations, graphs, and charts. Its chapters consider engineering, reliability, prognostics and health management, probabilistic multibody dynamical analysis, peridynamic and finite-element modelling, computer science, and mathematics.
This volume presents state-of-the-art tools and techniques for automatically detecting, diagnosing, and predicting the effects of adverse events in an engineered system. It emphasizes the importance of these techniques in managing the intricate interactions within and between engineering systems to maintain a high degree of reliability. Reflecting the interdisciplinary nature of the field, the book explains how the fundamental algorithms and methods of both physics-based and data-driven approaches effectively address systems health management in application areas such as data centers, aircraft, and software systems.
Researchers in the engineering industry and academia are making important advances on reliability-based design and modeling of uncertainty when data is limited. Non deterministic approaches have enabled industries to save billions by reducing design and warranty costs and by improving quality. Considering the lack of comprehensive and defini
Sustainable Manufacturing Systems Learn more about energy efficiency in traditional and advanced manufacturing settings with this leading and authoritative resource Sustainable Manufacturing Systems: An Energy Perspective delivers a comprehensive analysis of energy efficiency in sustainable manufacturing. The book presents manufacturing modeling methods and energy efficiency evaluation and improvement methods for different manufacturing systems. It allows industry professionals to understand the methodologies and techniques being embraced around the world that lead to advanced energy management. The book offers readers a comprehensive and systematic theoretical foundation for novel manufacturing system modeling, analysis, and control. It concludes with a summary of the insights and applications contained within and a discussion of future research issues that have yet to be grappled with. Sustainable Manufacturing Systems answers the questions that energy customers, managers, decision makers, and researchers have been asking about sustainable manufacturing. The book’s release coincides with recent and profound advances in smart grid applications and will serve as a practical tool to assist industrial engineers in furthering the green revolution. Readers will also benefit from: A thorough introduction to energy efficiency in manufacturing systems, including the current state of research and research methodologies An exploration of the development of manufacturing methodologies, including mathematical modeling for manufacturing systems and energy efficiency characterization in manufacturing systems An analysis of the applications of various methodologies, including electricity demand response for manufacturing systems and energy control and optimization for manufacturing systems utilizing combined heat and power systems A discussion of energy efficiency in advanced manufacturing systems, like stereolithography additive manufacturing and cellulosic biofuel manufacturing systems Perfect for researchers, undergraduate students, and graduate students in engineering disciplines, especially for those majoring in industrial, mechanical, electrical, and environmental engineering, Sustainable Manufacturing Systems will also earn a place in the libraries of management and business students interested in manufacturing system cost performance and energy management.
Selected, peer reviewed papers from the Third International Conference on Engineering Design and Optimization (ICEDO 2012), May 25-27, 2012, Shaoxing, P. R. China
PHM Society established International Journal of Prognostics and Health Management (IJPHM) in 2009 to facilitate archival publication of peer-reviewed results from research and development in the area of PHM. As a journal solely dedicated to the emerging field of PHM IJPHM is the first of its kind and has been a focal point for dissemination of peer-reviewed PHM knowledge. While for the first few years the journal maintained only an online presence, the printed volumes will now be available and can be obtained upon request. The first IJPHM volume came out in 2010 with three research papers that discussed the key issue of PHM performance that is still relevant to the maturing field of PHM.
International Journal of Prognostics and Health Management (IJPHM) was established in 2009 to facilitate archival publication of peer-reviewed results from research and development in the area of PHM. As a journal solely dedicated to the emerging field of PHM IJPHM is the first of its kind and has been a focal point for dissemination of peer-reviewed PHM knowledge. While for the first few years the journal maintained only an online presence, the printed volumes will now be available and can be obtained upon request. IJPHM is dedicated to all aspects of PHM: technical, management, economic, and social. In addition to regular periodic volumes IJPHM also publishes special issues with quality papers dedicated to focused topics.