Geometric Programming for Communication Systems

Geometric Programming for Communication Systems

Author: Mung Chiang

Publisher: Now Publishers Inc

Published: 2005

Total Pages: 172

ISBN-13: 9781933019093

DOWNLOAD EBOOK

Recently Geometric Programming has been applied to study a variety of problems in the analysis and design of communication systems from information theory and queuing theory to signal processing and network protocols. Geometric Programming for Communication Systems begins its comprehensive treatment of the subject by providing an in-depth tutorial on the theory, algorithms, and modeling methods of Geometric Programming. It then gives a systematic survey of the applications of Geometric Programming to the study of communication systems. It collects in one place various published results in this area, which are currently scattered in several books and many research papers, as well as to date unpublished results. Geometric Programming for Communication Systems is intended for researchers and students who wish to have a comprehensive starting point for understanding the theory and applications of geometric programming in communication systems.


Geometric Programming for Design and Cost Optimization

Geometric Programming for Design and Cost Optimization

Author: Robert Creese

Publisher: Springer Nature

Published: 2009-10-11

Total Pages: 74

ISBN-13: 3031793242

DOWNLOAD EBOOK

Geometric programming is used for design and cost optimization and the development of generalized design relationships and cost rations for specific problems. The early pioneers of the process, Zener, Duffin, Peterson, Beightler, and Wilde, played important roles in the development of geometric programming. The theory of geometric programming is presented and 10 examples are presented and solved in detail. The examples illustrate some of the difficulties encountered in typical problems and techniques for overcoming these difficulties. The primal-dual relationships are used to illustrate how to determine the primal variables from the dual solution. These primal-dual relationships can be used to determine additional dual equations when the degrees of difficulty are positive. The goal of this work is to have readers develop more case studies to further the application of this exciting mathematical tool. Table of Contents: Introduction / Brief History of Geometric Programming / Theoretical Considerations / Trash Can Case Study / Open Cargo Shipping Box Case Study / Metal Casting Cylindrical Riser Case Study / Process Furnace Design Case Study / Gas Transmission Pipeline Case Study / Journal Bearing Design Case Study / Metal Casting Hemispherical Top Cylindrical Side Riser / Liquefied Petroleum Gas(LPG) Cylinders Case Study / Material Removal/Metal Cutting Economics Case Study / Summary and Future Directions


Geometric Programming for Computer Aided Design

Geometric Programming for Computer Aided Design

Author: Alberto Paoluzzi

Publisher: John Wiley & Sons

Published: 2018-01-30

Total Pages: 1

ISBN-13: 1119509122

DOWNLOAD EBOOK

Geometric Programming is currently of interest in CAD (Computer Aided Design) and related areas such as computer graphics, modeling and animation, scientific simulation and robotics. A growing interest towards gemotric programming is forecast in the next few years with respect to market specific CAD applications (e.g. for architecture and mechanical CAD) and web-based collaborative design environments. PLaSM is a general purpose functional language to compute with geometry which the authors use throughout their text. The PLaSM language output produces VRML (Virtual Reality Modelling Language) files which are used to create virtual worlds. PLaSM blends the powerful algebraic approach to programming developed at IBM research, with a dimension-independent approach to geometric data structures and algorithms, This book shows that such geometric code can be surprisingly compact and easy to write. It begins by introducing the basic programming with PLaSM and algebraic and geometric foundations of shape modeling, the foundations of computer graphics, solid modeling and geometric modeling of manifolds follows and finally discusses the application of geometric programming. For each topic, the mathematics is given, together with the PLaSM implementation (usually with a few lines of readable code) and some worked examples. Combines excellent coverage of the theory with well-developed examples Numerous applications eg. scientific stimulation, robotics, CAD, Virtual Reality Worked exercises for each topic Uses PLaSM language (supplied) throughout to illustrate techniques Supported with web presence Written for Industrial Practioners developing CAD software, mechanical engineers in Graphics, CAD and CAM, undergraduate and postgraduate courses in Computer Science and Mechanical Engineering,as well as programmers involved with developing visualization software.


Geometric Programming for Design Equation Development and Cost/Profit Optimization (with illustrative case study problems and solutions), Third Edition

Geometric Programming for Design Equation Development and Cost/Profit Optimization (with illustrative case study problems and solutions), Third Edition

Author: Robert Creese

Publisher: Springer Nature

Published: 2022-05-31

Total Pages: 194

ISBN-13: 3031793765

DOWNLOAD EBOOK

Geometric Programming is used for cost minimization, profit maximization, obtaining cost ratios, and the development of generalized design equations for the primal variables. The early pioneers of geometric programming—Zener, Duffin, Peterson, Beightler, Wilde, and Phillips—played important roles in its development. Five new case studies have been added to the third edition. There are five major sections: (1) Introduction, History and Theoretical Fundamentals; (2) Cost Minimization Applications with Zero Degrees of Difficulty; (3) Profit Maximization Applications with Zero Degrees of Difficulty; (4) Applications with Positive Degrees of Difficulty; and (5) Summary, Future Directions, and Geometric Programming Theses & Dissertations Titles. The various solution techniques presented are the constrained derivative approach, condensation of terms approach, dimensional analysis approach, and transformed dual approach. A primary goal of this work is to have readers develop more case studies and new solution techniques to further the application of geometric programming.


Engineering Design Optimization

Engineering Design Optimization

Author: Joaquim R. R. A. Martins

Publisher: Cambridge University Press

Published: 2021-11-18

Total Pages: 653

ISBN-13: 110898861X

DOWNLOAD EBOOK

Based on course-tested material, this rigorous yet accessible graduate textbook covers both fundamental and advanced optimization theory and algorithms. It covers a wide range of numerical methods and topics, including both gradient-based and gradient-free algorithms, multidisciplinary design optimization, and uncertainty, with instruction on how to determine which algorithm should be used for a given application. It also provides an overview of models and how to prepare them for use with numerical optimization, including derivative computation. Over 400 high-quality visualizations and numerous examples facilitate understanding of the theory, and practical tips address common issues encountered in practical engineering design optimization and how to address them. Numerous end-of-chapter homework problems, progressing in difficulty, help put knowledge into practice. Accompanied online by a solutions manual for instructors and source code for problems, this is ideal for a one- or two-semester graduate course on optimization in aerospace, civil, mechanical, electrical, and chemical engineering departments.


Engineering Optimization

Engineering Optimization

Author: S. S. Rao

Publisher: New Age International

Published: 2000

Total Pages: 936

ISBN-13: 9788122411492

DOWNLOAD EBOOK

A Rigorous Mathematical Approach To Identifying A Set Of Design Alternatives And Selecting The Best Candidate From Within That Set, Engineering Optimization Was Developed As A Means Of Helping Engineers To Design Systems That Are Both More Efficient And Less Expensive And To Develop New Ways Of Improving The Performance Of Existing Systems.Thanks To The Breathtaking Growth In Computer Technology That Has Occurred Over The Past Decade, Optimization Techniques Can Now Be Used To Find Creative Solutions To Larger, More Complex Problems Than Ever Before. As A Consequence, Optimization Is Now Viewed As An Indispensable Tool Of The Trade For Engineers Working In Many Different Industries, Especially The Aerospace, Automotive, Chemical, Electrical, And Manufacturing Industries.In Engineering Optimization, Professor Singiresu S. Rao Provides An Application-Oriented Presentation Of The Full Array Of Classical And Newly Developed Optimization Techniques Now Being Used By Engineers In A Wide Range Of Industries. Essential Proofs And Explanations Of The Various Techniques Are Given In A Straightforward, User-Friendly Manner, And Each Method Is Copiously Illustrated With Real-World Examples That Demonstrate How To Maximize Desired Benefits While Minimizing Negative Aspects Of Project Design.Comprehensive, Authoritative, Up-To-Date, Engineering Optimization Provides In-Depth Coverage Of Linear And Nonlinear Programming, Dynamic Programming, Integer Programming, And Stochastic Programming Techniques As Well As Several Breakthrough Methods, Including Genetic Algorithms, Simulated Annealing, And Neural Network-Based And Fuzzy Optimization Techniques.Designed To Function Equally Well As Either A Professional Reference Or A Graduate-Level Text, Engineering Optimization Features Many Solved Problems Taken From Several Engineering Fields, As Well As Review Questions, Important Figures, And Helpful References.Engineering Optimization Is A Valuable Working Resource For Engineers Employed In Practically All Technological Industries. It Is Also A Superior Didactic Tool For Graduate Students Of Mechanical, Civil, Electrical, Chemical And Aerospace Engineering.


Fuzzy Geometric Programming

Fuzzy Geometric Programming

Author: Bing-Yuan Cao

Publisher: Springer Science & Business Media

Published: 2002-10-31

Total Pages: 296

ISBN-13: 9781402008764

DOWNLOAD EBOOK

The book gives readers a thorough understanding of fuzzy geometric programming, a field that was originated by the author. It is organized into two parts: theory and applications. The former aims at development of issues including fuzzy posynomial geometric programming and its dual form, a fuzzy reverse posynomial geometric programming and its dual form and a geometric programming model with fuzzy coefficients and fuzzy variables. The latter is intended to discuss problems in applications, including antinomy in fuzzy geometric programming, as well as practical examples from the power of industry and the administration of postal services. Audience: Researchers, doctoral and post-doctoral students working in fuzzy mathematics, applied mathematics, engineering, operations research, and economics.


Geometric Programming for Design and Cost Optimization 2nd edition

Geometric Programming for Design and Cost Optimization 2nd edition

Author: Robert Creese

Publisher: Springer Nature

Published: 2022-05-31

Total Pages: 128

ISBN-13: 3031793307

DOWNLOAD EBOOK

Geometric programming is used for design and cost optimization, the development of generalized design relationships, cost ratios for specific problems, and profit maximization. The early pioneers of the process - Zener, Duffin, Peterson, Beightler, Wilde, and Phillips -- played important roles in the development of geometric programming. There are three major areas: 1) Introduction, History, and Theoretical Fundamentals, 2) Applications with Zero Degrees of Difficulty, and 3) Applications with Positive Degrees of Difficulty. The primal-dual relationships are used to illustrate how to determine the primal variables from the dual solution and how to determine additional dual equations when the degrees of difficulty are positive. A new technique for determining additional equations for the dual, Dimensional Analysis, is demonstrated. The various solution techniques of the constrained derivative approach, the condensation of terms, and dimensional analysis are illustrated with example problems. The goal of this work is to have readers develop more case studies to further the application of this exciting tool. Table of Contents: Introduction / Brief History of Geometric Programming / Theoretical Considerations / The Optimal Box Design Case Study / Trash Can Case Study / The Open Cargo Shipping Box Case Study / Metal Casting Cylindrical Riser Case Study / Inventory Model Case Study / Process Furnace Design Case Study / Gas Transmission Pipeline Case Study / Profit Maximization Case Study / Material Removal/Metal Cutting Economics Case Study / Journal Bearing Design Case Study / Metal Casting Hemispherical Top Cylindrical Side Riser\\Case Study / Liquefied Petroleum Gas (LPG) Cylinders Case Study / Material Removal/Metal Cutting Economics with Two Constraints / The Open Cargo Shipping Box with Skids / Profit Maximization Considering Decreasing Cost Functions of Inventory Policy / Summary and Future Directions / Thesis and Dissertations on Geometric Programming