Not only do modeling and simulation help provide a better understanding of how real-world systems function, they also enable us to predict system behavior before a system is actually built and analyze systems accurately under varying operating conditions. Modeling and Simulation of Systems Using MATLAB® and Simulink® provides comprehensive, state-of-the-art coverage of all the important aspects of modeling and simulating both physical and conceptual systems. Various real-life examples show how simulation plays a key role in understanding real-world systems. The author also explains how to effectively use MATLAB and Simulink software to successfully apply the modeling and simulation techniques presented. After introducing the underlying philosophy of systems, the book offers step-by-step procedures for modeling different types of systems using modeling techniques, such as the graph-theoretic approach, interpretive structural modeling, and system dynamics modeling. It then explores how simulation evolved from pre-computer days into the current science of today. The text also presents modern soft computing techniques, including artificial neural networks, fuzzy systems, and genetic algorithms, for modeling and simulating complex and nonlinear systems. The final chapter addresses discrete systems modeling. Preparing both undergraduate and graduate students for advanced modeling and simulation courses, this text helps them carry out effective simulation studies. In addition, graduate students should be able to comprehend and conduct simulation research after completing this book.
Chemical Engineering Computation with MATLAB®, Second Edition continues to present basic to advanced levels of problem-solving techniques using MATLAB as the computation environment. The Second Edition provides even more examples and problems extracted from core chemical engineering subject areas and all code is updated to MATLAB version 2020. It also includes a new chapter on computational intelligence and: Offers exercises and extensive problem-solving instruction and solutions for various problems Features solutions developed using fundamental principles to construct mathematical models and an equation-oriented approach to generate numerical results Delivers a wealth of examples to demonstrate the implementation of various problem-solving approaches and methodologies for problem formulation, problem solving, analysis, and presentation, as well as visualization and documentation of results Includes an appendix offering an introduction to MATLAB for readers unfamiliar with the program, which will allow them to write their own MATLAB programs and follow the examples in the book Provides aid with advanced problems that are often encountered in graduate research and industrial operations, such as nonlinear regression, parameter estimation in differential systems, two-point boundary value problems and partial differential equations and optimization This essential textbook readies engineering students, researchers, and professionals to be proficient in the use of MATLAB to solve sophisticated real-world problems within the interdisciplinary field of chemical engineering. The text features a solutions manual, lecture slides, and MATLAB program files._
This text is an introduction to Simulink, a companion application to MATLAB. It is written for students at the undergraduate and graduate programs, as well as for the working professional. Although some previous knowledge of MATLAB would be helpful, it is not absolutely necessary; Appendix A of this text is an Introduction to MATLAB to enable the reader to begin learning both MATLAB and Simulink to perform graphical computations and programming.Chapters 2 through 18 describe the blocks of all Simulink libraries. Their application is illustrated with practical examples through Simulink models, some of which are supplemented with MATLAB functions, commands, and statements. Chapters 1 and 19 contain several Simulink models to illustrate various applied math and engineering applications. Appendix B is an introduction to difference equations as they apply to discrete?{time systems, and Appendix C introduces the reader to random generation procedures.This text supplements our Numerical Analysis with MATLAB and Spreadsheet Applications, ISBN 0-9709511-1-6. It is self-contained; the blocks of each library are described in an orderly fashion that is consistent with Simulink!|s documentation. This arrangement provides insight into how a model is used and how its parts interact with each another.Like MATLAB, Simulink can be used with both linear and nonlinear systems, which can be modeled in continuous time, sample time, or a hybrid of these. Examples are provided in this text.Most of the examples presented in this book can be implemented with the Student Versions of MATLAB and Simulink. A few may require the full versions of these outstanding packages, and can be skipped. Some add?{ons, known as Toolboxes and Blocksets can be obtained from The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760?{2098, USA, www.mathworks.com.
The All-in-One Guide to Mass Transport Phenomena: From Theory to Examples and Computation Mass transfer processes exist in practically all engineering fields and many biological systems; understanding them is essential for all chemical engineering students, and for practitioners in a broad range of practices, such as biomedical engineering, environmental engineering, material engineering, and the like. Mass Transfer Processes combines a modern, accessible introduction to modeling and computing these processes with demonstrations of their application in designing reactors and separation systems. P. A. Ramachandran’s integrated approach balances all the knowledge readers need to be effective, rather than merely paying lip service to some crucial topics. He covers both analytical and numerical solutions to mass transfer problems, demonstrating numerical problem-solving with widely used software packages, including MATLAB and CHEBFUN. Throughout, he links theory to realistic examples, both traditional and contemporary. Theory, examples, and in-depth coverage of differential, macroscopic, and mesoscopic modeling Physical chemistry aspects of diffusion phenomena Film models for calculating local mass transfer rates and diffusional interaction in gas–solid and gas–liquid reaction systems Application of mass transfer models in rate-based separation processes, and systems with simultaneous heat and mass transfer Convective mass transfer: empirical correlation, internal and external laminar flows, and turbulent flows Heterogeneous systems, from laminar flow reactors, diffusion-reaction models, reactive membranes, and electrochemical reactors Computations of mass transfer effects in multicomponent systems Solid–gas noncatalytic reactions for chemical, metallurgical, environmental, and electronic processes Applications in electrochemical and biomedical systems Design calculations for humidification, drying, and condensation systems and membrane-based separations Analysis of adsorption, chromatography, electrodialysis, and electrophoresis
MATLAB is a powerful, versatile, and interactive software for scientific and technical computations, including simulations. Specialized toolboxes provided with built-in functions are a special feature of MATLAB. This book aims at getting the reader started with computations and simulations in system engineering quickly and easily and then proceeds to build concepts for advanced computations and simulations that include the control and compensation of systems. Simulation through SIMULINK has also been described to allow the reader to get the feel of the real world situation.
This book offers a unified presentation that does not discriminate between atmospheric and space flight. It demonstrates that the two disciplines have evolved from the same set of physical principles and introduces a broad range of critical concepts in an accessible, yet mathematically rigorous presentation. The book presents many MATLAB and Simulink-based numerical examples and real-world simulations. Replete with illustrations, end-of-chapter exercises, and selected solutions, the work is primarily useful as a textbook for advanced undergraduate and beginning graduate-level students.
This book examines the nature of emergence in context of man-made (i.e. engineered) systems, in general, and system of systems engineering applications, specifically. It investigates emergence to interrogate or explore the domain space from a modeling and simulation perspective to facilitate understanding, detection, classification, prediction, control, and visualization of the phenomenon. Written by leading international experts, the text is the first to address emergence from an engineering perspective. "System engineering has a long and proud tradition of establishing the integrative view of systems. The field, however, has not always embraced and assimilated well the lessons and implications from research on complex adaptive systems. As the editors’ note, there have been no texts on Engineering Emergence: Principles and Applications. It is therefore especially useful to have this new, edited book that pulls together so many of the key elements, ranging from the theoretical to the practical, and tapping into advances in methods, tools, and ways to study system complexity. Drs. Rainey and Jamshidi are to be congratulated both for their vision of the book and their success in recruiting contributors with so much to say. Most notable, however, is that this is a book with engineering at its core. It uses modeling and simulation as the language in which to express principles and insights in ways that include tight thinking and rigor despite dealing with notably untidy and often surprising phenomena." — Paul K. Davis, RAND and Frederick S. Pardee RAND Graduate School The first chapter is an introduction and overview to the text. The book provides 12 chapters that have a theoretical foundation for this subject. Includes 7 specific example chapters of how various modeling and simulation paradigms/techniques can be used to investigate emergence in an engineering context to facilitate understanding, detection, classification, prediction, control and visualization of emergent behavior. The final chapter offers lessons learned and the proposed way-ahead for this discipline.
System Simulation Techniques with MATLAB and Simulink comprehensively explains how to use MATLAB and Simulink to perform dynamic systems simulation tasks for engineering and non-engineering applications. This book begins with covering the fundamentals of MATLAB programming and applications, and the solutions to different mathematical problems in simulation. The fundamentals of Simulink modelling and simulation are then presented, followed by coverage of intermediate level modelling skills and more advanced techniques in Simulink modelling and applications. Finally the modelling and simulation of engineering and non-engineering systems are presented. The areas covered include electrical, electronic systems, mechanical systems, pharmacokinetic systems, video and image processing systems and discrete event systems. Hardware-in-the-loop simulation and real-time application are also discussed. Key features: Progressive building of simulation skills using Simulink, from basics through to advanced levels, with illustrations and examples Wide coverage of simulation topics of applications from engineering to non-engineering systems Dedicated chapter on hardware-in-the-loop simulation and real time control End of chapter exercises A companion website hosting a solution manual and powerpoint slides System Simulation Techniques with MATLAB and Simulink is a suitable textbook for senior undergraduate/postgraduate courses covering modelling and simulation, and is also an ideal reference for researchers and practitioners in industry.