Engineered Cell Manipulation for Biomedical Application

Engineered Cell Manipulation for Biomedical Application

Author: Misturu Akashi

Publisher: Springer

Published: 2014-10-16

Total Pages: 271

ISBN-13: 4431551395

DOWNLOAD EBOOK

This book is the first to summarize new technologies for engineered cell manipulation. The contents focus on control of cellular functions by nanomaterials and control of three-dimensional cell–cell interactions. Control of cellular functions is important for cell differentiation, maturation, and activation, which generally are controlled by the addition of soluble cytokines or growth factors into cell culture dishes. Target antigen molecules can be efficiently delivered to the cytosol of the dendritic cells using the nanoparticle technique described here, and cellular functions such as dendritic cell maturation can be controlled easily and with precision. This book describes basic preparation of the nanoparticles, activation control of dendritic cells, immune function control, and in vivo application for various vaccination systems. The second type of control,that of cell–cell interaction, is important for tissue engineering in order to develop three-dimensional cellular constructs. To achieve in vitro engineering of three-dimensional human tissue constructs, cell–cell interaction must be controlled in three dimensions, but typical biological cell manipulation technique cannot accomplish this task. An engineered cell manipulation technique is necessary. In this book the authors describe the fabrication of nanofilms onto cell surfaces, development of three-dimensional cellular multilayers, and various applications of the cellular multilayers as three-dimensional human models. This important work will be highly informative for researchers and students in the fields of materials science, polymer science, biomaterials, medicinal science, nanotechnology, biotechnology, and biology.


Culture of Cells for Tissue Engineering

Culture of Cells for Tissue Engineering

Author: Gordana Vunjak-Novakovic

Publisher: John Wiley & Sons

Published: 2006-03-31

Total Pages: 528

ISBN-13: 0471741809

DOWNLOAD EBOOK

Step-by-step, practical guidance for the acquisition, manipulation,and use of cell sources for tissue engineering Tissue engineering is a multidisciplinary field incorporatingthe principles of biology, chemistry, engineering, and medicine tocreate biological substitutes of native tissues for scientificresearch or clinical use. Specific applications of this technologyinclude studies of tissue development and function, investigatingdrug response, and tissue repair and replacement. This area israpidly becoming one of the most promising treatment options forpatients suffering from tissue failure. Written by leading experts in the field, Culture of Cellsfor Tissue Engineering offers step-by-step, practicalguidance for the acquisition, manipulation, and use of cell sourcesfor tissue engineering. It offers a unique focus on tissueengineering methods for cell sourcing and utilization, combiningtheoretical overviews and detailed procedures. Features of the text include: Easy-to-use format with a two-part organization Logically organized—part one discusses cell sourcing,preparation, and characterization and the second part examinesspecific engineered tissues Each chapter covers: structural and functional properties oftissues, methodological principles, culture, cellselection/expansion, cell modifications, cell seeding, tissueculture, analytical assays, and a detailed description ofrepresentative studies End-of-chapter features include useful listings of sources forreagents, materials, and supplies, with the contact details of thesuppliers listed at the end of the book A section of elegant color plates to back up the figures in thechapters Culture of Cells for Tissue Engineering givesnovice and seasoned researchers in tissue engineering an invaluableresource. In addition, the text is suitable for professionals inrelated research, particularly in those areas where cell and tissueculture is a new or emerging tool.


Microtechnology for Cell Manipulation and Sorting

Microtechnology for Cell Manipulation and Sorting

Author: Wonhee Lee

Publisher: Springer

Published: 2016-10-05

Total Pages: 287

ISBN-13: 3319441396

DOWNLOAD EBOOK

This book delves into the recent developments in the microscale and microfluidic technologies that allow manipulation at the single and cell aggregate level. Expert authors review the dominant mechanisms that manipulate and sort biological structures, making this a state-of-the-art overview of conventional cell sorting techniques, the principles of microfluidics, and of microfluidic devices. All chapters highlight the benefits and drawbacks of each technique they discuss, which include magnetic, electrical, optical, acoustic, gravity/sedimentation, inertial, deformability, and aqueous two-phase systems as the dominant mechanisms utilized by microfluidic devices to handle biological samples. Each chapter explains the physics of the mechanism at work, and reviews common geometries and devices to help readers decide the type of style of device required for various applications. This book is appropriate for graduate-level biomedical engineering and analytical chemistry students, as well as engineers and scientists working in the biotechnology industry.


Stem Cells and the Future of Regenerative Medicine

Stem Cells and the Future of Regenerative Medicine

Author: Institute of Medicine

Publisher: National Academies Press

Published: 2002-01-25

Total Pages: 112

ISBN-13: 0309170427

DOWNLOAD EBOOK

Recent scientific breakthroughs, celebrity patient advocates, and conflicting religious beliefs have come together to bring the state of stem cell researchâ€"specifically embryonic stem cell researchâ€"into the political crosshairs. President Bush's watershed policy statement allows federal funding for embryonic stem cell research but only on a limited number of stem cell lines. Millions of Americans could be affected by the continuing political debate among policymakers and the public. Stem Cells and the Future of Regenerative Medicine provides a deeper exploration of the biological, ethical, and funding questions prompted by the therapeutic potential of undifferentiated human cells. In terms accessible to lay readers, the book summarizes what we know about adult and embryonic stem cells and discusses how to go about the transition from mouse studies to research that has therapeutic implications for people. Perhaps most important, Stem Cells and the Future of Regenerative Medicine also provides an overview of the moral and ethical problems that arise from the use of embryonic stem cells. This timely book compares the impact of public and private research funding and discusses approaches to appropriate research oversight. Based on the insights of leading scientists, ethicists, and other authorities, the book offers authoritative recommendations regarding the use of existing stem cell lines versus new lines in research, the important role of the federal government in this field of research, and other fundamental issues.


Electrospun Materials for Tissue Engineering and Biomedical Applications

Electrospun Materials for Tissue Engineering and Biomedical Applications

Author: Tamer Uyar

Publisher: Woodhead Publishing

Published: 2017-05-31

Total Pages: 446

ISBN-13: 0081022220

DOWNLOAD EBOOK

Electrospinning, an electro-hydrodynamic process, is a versatile and promising platform technology for the production of nanofibrous materials for tissue engineering and biomedical applications. Electrospun Materials for Tissue Engineering and Biomedical Applications, examines the rapid development of electrospun materials for use in tissue engineering and biomedical applications. With a strong focus on fundamental materials science and engineering, this book also looks at successful technology transfers to the biomedical industry, highlighting biomedical products already on the market as well as the requirements to successfully commercialize electrospun materials for potential use in tissue engineering and biomedical areas. This book is a valuable resource for materials and biomedical scientists and engineers wishing to broaden their knowledge on the tissue engineering and biomedical applications of electrospun fibrous materials. - Provides all-encompassing coverage of fundamental science, technology and industrial case studies - Presents guidance on industrial scalability of electrospun biomaterials - Written by a multidisciplinary team or researchers from academia and industry, offering a balanced viewpoint on the subject


Semiconducting Silicon Nanowires for Biomedical Applications

Semiconducting Silicon Nanowires for Biomedical Applications

Author: Jeffery L. Coffer

Publisher: Woodhead Publishing

Published: 2021-09-14

Total Pages: 442

ISBN-13: 0323851312

DOWNLOAD EBOOK

In its second, extensively revised second edition, Semiconducting Silicon Nanowires for Biomedical Applications reviews the fabrication, properties, and biomedical applications of this key material. The book begins by reviewing the basics of growth, characterization, biocompatibility, and surface modification of semiconducting silicon nanowires. Attention then turns to use of these structures for tissue engineering and delivery applications, followed by detection and sensing. Reflecting the evolution of this multidisciplinary subject, several new key topics are highlighted, including our understanding of the cell-nanowire interface, latest advances in associated morphologies (including silicon nanoneedles and nanotubes for therapeutic delivery), and significantly, the status of silicon nanowire commercialization in biotechnology. Semiconducting Silicon Nanowires for Biomedical Applications is a comprehensive resource for biomaterials scientists who are focused on biosensors, drug delivery, and the next generation of nano-biotech platforms that require a detailed understanding of the cell-nanowire interface, along with researchers and developers in industry and academia who are concerned with nanoscale biomaterials, in particular electronically-responsive structures. - Reviews the growth, characterization, biocompatibility, and surface modification of semiconducting silicon nanowires - Describes silicon nanowires for tissue engineering and delivery applications, including cellular binding & internalization, tissue engineering scaffolds, mediated differentiation of stem cells, and silicon nanoneedles & nanotubes for delivery of small molecule / biologic-based therapeutics - Highlights the use of silicon nanowires for detection and sensing - Presents a detailed description of our current understanding of the cell-nanowire interface - Covers the current status of commercial development of silicon nanowire-based platforms


Microfluidic Devices for Biomedical Applications

Microfluidic Devices for Biomedical Applications

Author: Xiujun (James) Li

Publisher: Woodhead Publishing

Published: 2021-08-05

Total Pages: 724

ISBN-13: 0128227559

DOWNLOAD EBOOK

Microfluidic Devices for Biomedical Applications, Second Edition provides updated coverage on the fundamentals of microfluidics, while also exploring a wide range of medical applications. Chapters review materials and methods, microfluidic actuation mechanisms, recent research on droplet microfluidics, applications in drug discovery and controlled-delivery, including micro needles, consider applications of microfluidic devices in cellular analysis and manipulation, tissue engineering and their role in developing tissue scaffolds, and cover the applications of microfluidic devices in diagnostic sensing, including genetic analysis, low-cost bioassays, viral detection, and radio chemical synthesis. This book is an essential reference for medical device manufacturers, scientists and researchers concerned with microfluidics in the field of biomedical applications and life-science industries. - Discusses the fundamentals of microfluidics or lab-on-a-chip (LOC) and explores a wide range of medical applications - Considers materials and methods for microfabrication, microfluidic actuation mechanisms and digital microfluidic technologies - Details applications of microfluidic devices in cellular analysis and manipulation, tissue engineering and its role in developing tissue scaffolds, and stem cell engineering