NOx Emission Control Technologies in Stationary and Automotive Internal Combustion Engines

NOx Emission Control Technologies in Stationary and Automotive Internal Combustion Engines

Author: B. Ashok

Publisher: Elsevier

Published: 2021-11-09

Total Pages: 488

ISBN-13: 0128242280

DOWNLOAD EBOOK

NOx Emission Control Technologies in Stationary and Automotive Internal Combustion Engines: Approaches Toward NOx Free Automobiles presents the fundamental theory of emission formation, particularly the oxides of nitrogen (NOx) and its chemical reactions and control techniques. The book provides a simplified framework for technical literature on NOx reduction strategies in IC engines, highlighting thermodynamics, combustion science, automotive emissions and environmental pollution control. Sections cover the toxicity and roots of emissions for both SI and CI engines and the formation of various emissions such as CO, SO2, HC, NOx, soot, and PM from internal combustion engines, along with various methods of NOx formation. Topics cover the combustion process, engine design parameters, and the application of exhaust gas recirculation for NOx reduction, making this book ideal for researchers and students in automotive, mechanical, mechatronics and chemical engineering students working in the field of emission control techniques. - Covers advanced and recent technologies and emerging new trends in NOx reduction for emission control - Highlights the effects of exhaust gas recirculation (EGR) on engine performance parameters - Discusses emission norms such as EURO VI and Bharat stage VI in reducing global air pollution due to engine emissions


Pounder's Marine Diesel Engines and Gas Turbines

Pounder's Marine Diesel Engines and Gas Turbines

Author: Malcolm Latarche

Publisher: Butterworth-Heinemann

Published: 2020-12-01

Total Pages: 958

ISBN-13: 0081027850

DOWNLOAD EBOOK

Pounder's Marine Diesel Engines and Gas Turbines, Tenth Edition, gives engineering cadets, marine engineers, ship operators and managers insights into currently available engines and auxiliary equipment and trends for the future. This new edition introduces new engine models that will be most commonly installed in ships over the next decade, as well as the latest legislation and pollutant emissions procedures. Since publication of the last edition in 2009, a number of emission control areas (ECAs) have been established by the International Maritime Organization (IMO) in which exhaust emissions are subject to even more stringent controls. In addition, there are now rules that affect new ships and their emission of CO2 measured as a product of cargo carried. - Provides the latest emission control technologies, such as SCR and water scrubbers - Contains complete updates of legislation and pollutant emission procedures - Includes the latest emission control technologies and expands upon remote monitoring and control of engines


Diesel and Gasoline Engine Exhausts and Some Nitroarenes

Diesel and Gasoline Engine Exhausts and Some Nitroarenes

Author: IARC Working Group on the Evaluation of Carcinogenic Risks to Humans

Publisher: IARC Monographs on the Evaluat

Published: 2015-06-04

Total Pages: 0

ISBN-13: 9789283213284

DOWNLOAD EBOOK

This volume of the IARC Monographs provides evaluations of the carcinogenicity of diesel and gasoline engine exhausts, and of 10 nitroarenes found in diesel engine exhaust: 3,7-dinitrofluoranthene, 3,9-dinitrofluoranthene, 1,3-dinitropyrene, 1,6-dinitropyrene, 1,8-dinitropyrene, 6-nitrochrysene, 2-nitrofluorene, 1-nitropyrene, 4-nitropyrene, and 3-nitrobenzanthrone. Diesel engines are used for transport on and off roads (e.g. passenger cars, buses, trucks, trains, ships), for machinery in various industrial sectors (e.g. mining, construction), and for electricity generators, particularly in developing countries. Gasoline engines are used in cars and hand-held equipment (e.g. chainsaws). The emissions from such combustion engines comprise a complex and varying mixture of gases (e.g. carbon monoxide, nitrogen oxides), particles (e.g. PM10, PM2.5, ultrafine particles, elemental carbon, organic carbon, ash, sulfate, and metals), volatile organic compunds (e.g. benzene, formaldehyde) and semi-volatile organic compounds (e.g. polycyclic aromatic hydrocarbons) including oxygenated and nitrated derivatives of polycyclic aromatic hydrocarbons. Diesel and gasoline engines thus make a significant contribution to a broad range of air pollutants to which people are exposed in the general population as well as in different occupational settings. An IARC Monographs Working Group reviewed epidemiological evidence, animal bioassays, and mechanistic and other relevant data to reach conclusions as to the carcinogenic hazard to humans of environmental or occupational exposure to diesel and gasoline engine exhausts (including those associated with the mining, railroad, construction, and transportation industries) and to 10 selected nitroarenes. -- Back cover.


Assessment of Fuel Economy Technologies for Light-Duty Vehicles

Assessment of Fuel Economy Technologies for Light-Duty Vehicles

Author: National Research Council

Publisher: National Academies Press

Published: 2011-06-03

Total Pages: 373

ISBN-13: 0309216389

DOWNLOAD EBOOK

Various combinations of commercially available technologies could greatly reduce fuel consumption in passenger cars, sport-utility vehicles, minivans, and other light-duty vehicles without compromising vehicle performance or safety. Assessment of Technologies for Improving Light Duty Vehicle Fuel Economy estimates the potential fuel savings and costs to consumers of available technology combinations for three types of engines: spark-ignition gasoline, compression-ignition diesel, and hybrid. According to its estimates, adopting the full combination of improved technologies in medium and large cars and pickup trucks with spark-ignition engines could reduce fuel consumption by 29 percent at an additional cost of $2,200 to the consumer. Replacing spark-ignition engines with diesel engines and components would yield fuel savings of about 37 percent at an added cost of approximately $5,900 per vehicle, and replacing spark-ignition engines with hybrid engines and components would reduce fuel consumption by 43 percent at an increase of $6,000 per vehicle. The book focuses on fuel consumption-the amount of fuel consumed in a given driving distance-because energy savings are directly related to the amount of fuel used. In contrast, fuel economy measures how far a vehicle will travel with a gallon of fuel. Because fuel consumption data indicate money saved on fuel purchases and reductions in carbon dioxide emissions, the book finds that vehicle stickers should provide consumers with fuel consumption data in addition to fuel economy information.


Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles

Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles

Author: National Research Council

Publisher: National Academies Press

Published: 2015-09-28

Total Pages: 812

ISBN-13: 0309373913

DOWNLOAD EBOOK

The light-duty vehicle fleet is expected to undergo substantial technological changes over the next several decades. New powertrain designs, alternative fuels, advanced materials and significant changes to the vehicle body are being driven by increasingly stringent fuel economy and greenhouse gas emission standards. By the end of the next decade, cars and light-duty trucks will be more fuel efficient, weigh less, emit less air pollutants, have more safety features, and will be more expensive to purchase relative to current vehicles. Though the gasoline-powered spark ignition engine will continue to be the dominant powertrain configuration even through 2030, such vehicles will be equipped with advanced technologies, materials, electronics and controls, and aerodynamics. And by 2030, the deployment of alternative methods to propel and fuel vehicles and alternative modes of transportation, including autonomous vehicles, will be well underway. What are these new technologies - how will they work, and will some technologies be more effective than others? Written to inform The United States Department of Transportation's National Highway Traffic Safety Administration (NHTSA) and Environmental Protection Agency (EPA) Corporate Average Fuel Economy (CAFE) and greenhouse gas (GHG) emission standards, this new report from the National Research Council is a technical evaluation of costs, benefits, and implementation issues of fuel reduction technologies for next-generation light-duty vehicles. Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles estimates the cost, potential efficiency improvements, and barriers to commercial deployment of technologies that might be employed from 2020 to 2030. This report describes these promising technologies and makes recommendations for their inclusion on the list of technologies applicable for the 2017-2025 CAFE standards.


Engine Management

Engine Management

Author: Greg Banish

Publisher: CarTech Inc

Published: 2011-04-01

Total Pages: 66

ISBN-13: 1932494421

DOWNLOAD EBOOK

Tuning engines can be a mysterious art, all engines need a precise balance of fuel, air, and timing in order to reach their true performance potential. Engine Management: Advanced Tuning takes engine-tuning techniques to the next level, explaining how the EFI system determines engine operation and how the calibrator can change the controlling parameters to optimize actual engine performance. It is the most advanced book on the market, a must-have for tuners and calibrators and a valuable resource for anyone who wants to make horsepower with a fuel-injected, electronically controlled engine.


Air Quality Management in the United States

Air Quality Management in the United States

Author: National Research Council

Publisher: National Academies Press

Published: 2004-08-30

Total Pages: 426

ISBN-13: 0309167868

DOWNLOAD EBOOK

Managing the nation's air quality is a complex undertaking, involving tens of thousands of people in regulating thousands of pollution sources. The authors identify what has worked and what has not, and they offer wide-ranging recommendations for setting future priorities, making difficult choices, and increasing innovation. This new book explores how to better integrate scientific advances and new technologies into the air quality management system. The volume reviews the three-decade history of governmental efforts toward cleaner air, discussing how air quality standards are set and results measured, the design and implementation of control strategies, regulatory processes and procedures, special issues with mobile pollution sources, and more. The book looks at efforts to spur social and behavioral changes that affect air quality, the effectiveness of market-based instruments for air quality regulation, and many other aspects of the issue. Rich in technical detail, this book will be of interest to all those engaged in air quality management: scientists, engineers, industrial managers, law makers, regulators, health officials, clean-air advocates, and concerned citizens.