This Intergovernmental Panel on Climate Change Special Report (IPCC-SRREN) assesses the potential role of renewable energy in the mitigation of climate change. It covers the six most important renewable energy sources - bioenergy, solar, geothermal, hydropower, ocean and wind energy - as well as their integration into present and future energy systems. It considers the environmental and social consequences associated with the deployment of these technologies, and presents strategies to overcome technical as well as non-technical obstacles to their application and diffusion. SRREN brings a broad spectrum of technology-specific experts together with scientists studying energy systems as a whole. Prepared following strict IPCC procedures, it presents an impartial assessment of the current state of knowledge: it is policy relevant but not policy prescriptive. SRREN is an invaluable assessment of the potential role of renewable energy for the mitigation of climate change for policymakers, the private sector, and academic researchers.
Greenhouse Gases Balance of Bioenergy Systems covers every stage of a bioenergy system, from establishment to energy delivery, presenting a comprehensive, multidisciplinary overview of all the relevant issues and environmental risks. It also provides an understanding of how these can be practically managed to deliver sustainable greenhouse gas reductions. Its expert chapter authors present readers to the methods used to determine the greenhouse gas balance of bioenergy systems, the data required and the significance of the results obtained. It also provides in-depth discussion of key issues and uncertainties, such as soil, agriculture, forestry, fuel conversion and emissions formation. Finally, international case studies examine typical GHG reduction levels for different systems and highlight best practices for bioenergy GHG mitigation. For bringing together into one volume information from several different fields that was up until now scattered throughout many different sources, this book is ideal for researchers, graduate students and professionals coming into the bioenergy field, no matter their previous background. It will be particularly useful for bioenergy researchers seeking to calculate greenhouse gas balances for systems they are studying. I will also be an important resource for policy makers and energy analysts. - Uses a multidisciplinary approach to synthesize the diverse information that is required to competently execute GHG balances for bioenergy systems - Presents an in-depth understanding of the science underpinning key issues and uncertainty in GHG assessments of bioenergy systems - Includes case studies that examine ways to maximize the GHG reductions delivered by different bioenergy systems
Global energy network is an important platform to guarantee effective exploitation of global clean energy and ensure reliable energy supply for everybody. Global Energy Interconnection analyzes the current situation and challenges of global energy development, provides the strategic thinking, overall objective, basic pattern, construction method and development mode for the development of global energy network. Based on the prediction of global energy and electricity supply and demand in the future, with the development of UHV AC/DC and smart grid technologies, this book offers new solutions to drive the safe, clean, highly efficient and sustainable development of global energy. The concept and development ideas concerning global energy interconnection in this book are based on the author's thinking of strategic issues about China's and the world's energy and electricity development for many years, especially combined with successful practices of China's UHV development. This book is particularly suitable for researchers and graduated students engaged in energy sector, as well as energy economics researchers, economists, consultants, and government energy policy makers in relevant fields. - Based on the author's many years' experience in developing Smart Grid solutions within national and international projects. - Combines both solid background information and cutting-edge technology progress, coupled with a useful and impressive list of references. - The key energy problems which are challenging us nowadays are well stated and explained in this book, which facilitates a better understanding of the development of global energy interconnection with UHV AC/DC and smart grid technologies.
The signals are everywhere that our planet is experiencing significant climate change. It is clear that we need to reduce the emissions of carbon dioxide and other greenhouse gases from our atmosphere if we want to avoid greatly increased risk of damage from climate change. Aggressively pursuing a program of emissions abatement or mitigation will show results over a timescale of many decades. How do we actively remove carbon dioxide from the atmosphere to make a bigger difference more quickly? As one of a two-book report, this volume of Climate Intervention discusses CDR, the carbon dioxide removal of greenhouse gas emissions from the atmosphere and sequestration of it in perpetuity. Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration introduces possible CDR approaches and then discusses them in depth. Land management practices, such as low-till agriculture, reforestation and afforestation, ocean iron fertilization, and land-and-ocean-based accelerated weathering, could amplify the rates of processes that are already occurring as part of the natural carbon cycle. Other CDR approaches, such as bioenergy with carbon capture and sequestration, direct air capture and sequestration, and traditional carbon capture and sequestration, seek to capture CO2 from the atmosphere and dispose of it by pumping it underground at high pressure. This book looks at the pros and cons of these options and estimates possible rates of removal and total amounts that might be removed via these methods. With whatever portfolio of technologies the transition is achieved, eliminating the carbon dioxide emissions from the global energy and transportation systems will pose an enormous technical, economic, and social challenge that will likely take decades of concerted effort to achieve. Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration will help to better understand the potential cost and performance of CDR strategies to inform debate and decision making as we work to stabilize and reduce atmospheric concentrations of carbon dioxide.
NEW YORK TIMES BESTSELLER NATIONAL BESTSELLER In this urgent, singularly authoritative book, Bill Gates sets out a wide-ranging, practical--and accessible--plan for how the world can get to zero greenhouse gas emissions in time to avoid an irreversible climate catastrophe. Bill Gates has spent a decade investigating the causes and effects of climate change. With the help and guidance of experts in the fields of physics, chemistry, biology, engineering, political science and finance, he has focused on exactly what must be done in order to stop the planet's slide toward certain environmental disaster. In this book, he not only gathers together all the information we need to fully grasp how important it is that we work toward net-zero emissions of greenhouse gases but also details exactly what we need to do to achieve this profoundly important goal. He gives us a clear-eyed description of the challenges we face. He describes the areas in which technology is already helping to reduce emissions; where and how the current technology can be made to function more effectively; where breakthrough technologies are needed, and who is working on these essential innovations. Finally, he lays out a concrete plan for achieving the goal of zero emissions--suggesting not only policies that governments should adopt, but what we as individuals can do to keep our government, our employers and ourselves accountable in this crucial enterprise. As Bill Gates makes clear, achieving zero emissions will not be simple or easy to do, but by following the guidelines he sets out here, it is a goal firmly within our reach.
• New York Times bestseller • The 100 most substantive solutions to reverse global warming, based on meticulous research by leading scientists and policymakers around the world “At this point in time, the Drawdown book is exactly what is needed; a credible, conservative solution-by-solution narrative that we can do it. Reading it is an effective inoculation against the widespread perception of doom that humanity cannot and will not solve the climate crisis. Reported by-effects include increased determination and a sense of grounded hope.” —Per Espen Stoknes, Author, What We Think About When We Try Not To Think About Global Warming “There’s been no real way for ordinary people to get an understanding of what they can do and what impact it can have. There remains no single, comprehensive, reliable compendium of carbon-reduction solutions across sectors. At least until now. . . . The public is hungry for this kind of practical wisdom.” —David Roberts, Vox “This is the ideal environmental sciences textbook—only it is too interesting and inspiring to be called a textbook.” —Peter Kareiva, Director of the Institute of the Environment and Sustainability, UCLA In the face of widespread fear and apathy, an international coalition of researchers, professionals, and scientists have come together to offer a set of realistic and bold solutions to climate change. One hundred techniques and practices are described here—some are well known; some you may have never heard of. They range from clean energy to educating girls in lower-income countries to land use practices that pull carbon out of the air. The solutions exist, are economically viable, and communities throughout the world are currently enacting them with skill and determination. If deployed collectively on a global scale over the next thirty years, they represent a credible path forward, not just to slow the earth’s warming but to reach drawdown, that point in time when greenhouse gases in the atmosphere peak and begin to decline. These measures promise cascading benefits to human health, security, prosperity, and well-being—giving us every reason to see this planetary crisis as an opportunity to create a just and livable world.
Climate change is occurring, is caused largely by human activities, and poses significant risks for-and in many cases is already affecting-a broad range of human and natural systems. The compelling case for these conclusions is provided in Advancing the Science of Climate Change, part of a congressionally requested suite of studies known as America's Climate Choices. While noting that there is always more to learn and that the scientific process is never closed, the book shows that hypotheses about climate change are supported by multiple lines of evidence and have stood firm in the face of serious debate and careful evaluation of alternative explanations. As decision makers respond to these risks, the nation's scientific enterprise can contribute through research that improves understanding of the causes and consequences of climate change and also is useful to decision makers at the local, regional, national, and international levels. The book identifies decisions being made in 12 sectors, ranging from agriculture to transportation, to identify decisions being made in response to climate change. Advancing the Science of Climate Change calls for a single federal entity or program to coordinate a national, multidisciplinary research effort aimed at improving both understanding and responses to climate change. Seven cross-cutting research themes are identified to support this scientific enterprise. In addition, leaders of federal climate research should redouble efforts to deploy a comprehensive climate observing system, improve climate models and other analytical tools, invest in human capital, and improve linkages between research and decisions by forming partnerships with action-oriented programs.
Global warming continues to gain importance on the international agenda and calls for action are heightening. Yet, there is still controversy over what must be done and what is needed to proceed. Policy Implications of Greenhouse Warming describes the information necessary to make decisions about global warming resulting from atmospheric releases of radiatively active trace gases. The conclusions and recommendations include some unexpected results. The distinguished authoring committee provides specific advice for U.S. policy and addresses the need for an international response to potential greenhouse warming. It offers a realistic view of gaps in the scientific understanding of greenhouse warming and how much effort and expense might be required to produce definitive answers. The book presents methods for assessing options to reduce emissions of greenhouse gases into the atmosphere, offset emissions, and assist humans and unmanaged systems of plants and animals to adjust to the consequences of global warming.
As we are moving ahead into the 21st century, our hunger for cost effective and environmentally friendly energy continues to grow. The Energy Information Administration of US has forecasted that only in the first two decades of the 21st century, our energy demand will increase by 60% compared to the levels at the end of the 20th century. Fossil fuels have been traditionally the major primary energy sources worldwide, and their role is expected to continue growing for the forecasted period, due to their inherent cost competitiveness compared to non-fossil fuel energy sources. However, the current fossil energy scenario is undergoing significant transformations, especially to accommodate increasingly stringent environmental challenges of contaminants like sulfur dioxide, nitrogen oxides or mercury, while still providing affordable energy. Furthermore, traditional fossil fuel utilization is inherently plagued with greenhouse gas emissions from combustion, especially carbon dioxide from stationary sources as well as from mobile sources. Should worldwide government policies dictate a reduction of greenhouse gas emissions, such as proposed by the Kyoto Protocol and the implementation of carbon taxes, fossil fuels would lose their significant competitive appeal in favor of nuclear energy and renewable energy sources. However, the current non-fossil fuel energy share of the worldwide energy market is merely below 15%, and therefore, it is more likely that fossil fuel energy producers would adapt to the new requirements by developing and implementing emission control technologies, and emission trades among other strategies.