Battery Management System for Future Electric Vehicles

Battery Management System for Future Electric Vehicles

Author: Dirk Söffker

Publisher: MDPI

Published: 2020-11-09

Total Pages: 154

ISBN-13: 3039433504

DOWNLOAD EBOOK

The future of electric vehicles relies nearly entirely on the design, monitoring, and control of the vehicle battery and its associated systems. Along with an initial optimal design of the cell/pack-level structure, the runtime performance of the battery needs to be continuously monitored and optimized for a safe and reliable operation and prolonged life. Improved charging techniques need to be developed to protect and preserve the battery. The scope of this Special Issue is to address all the above issues by promoting innovative design concepts, modeling and state estimation techniques, charging/discharging management, and hybridization with other storage components.


Energy Storage for Modern Power System Operations

Energy Storage for Modern Power System Operations

Author: Sandeep Dhundhara

Publisher: John Wiley & Sons

Published: 2021-10-19

Total Pages: 354

ISBN-13: 111976033X

DOWNLOAD EBOOK

ENERGY STORAGE for MODERN POWER SYSTEM OPERATIONS Written and edited by a team of well-known and respected experts in the field, this new volume on energy storage presents the state-of-the-art developments and challenges for modern power systems for engineers, researchers, academicians, industry professionals, consultants, and designers. Energy storage systems have been recognized as the key elements in modern power systems, where they are able to provide primary and secondary frequency controls, voltage regulation, power quality improvement, stability enhancement, reserve service, peak shaving, and so on. Particularly, deployment of energy storage systems in a distributed manner will contribute greatly in the development of smart grids and providing promising solutions for the above issues. The main challenges will be the adoption of new techniques and strategies for the optimal planning, control, monitoring and management of modern power systems with the wide installation of distributed energy storage systems. Thus, the aim of this book is to illustrate the potential of energy storage systems in different applications of modern power systems, with a view toward illuminating recent advances and research trends in storage technologies. This exciting new volume covers the recent advancements and applications of different energy storage technologies that are useful to engineers, scientists, and students in the discipline of electrical engineering. Suitable for the engineers at power companies and energy storage consultants working in the energy storage field, this book offers a cross-disciplinary look across electrical, mechanical, chemical and renewable engineering aspects of energy storage. Whether for the veteran engineer or the student, this is a must-have for any library. AUDIENCE Electrical engineers and other designers, engineers, and scientists working in energy storage


Electric Vehicle Battery Systems

Electric Vehicle Battery Systems

Author: Sandeep Dhameja

Publisher: Elsevier

Published: 2001-10-30

Total Pages: 243

ISBN-13: 0080488765

DOWNLOAD EBOOK

Electric Vehicle Battery Systems provides operational theory and design guidance for engineers and technicians working to design and develop efficient electric vehicle (EV) power sources. As Zero Emission Vehicles become a requirement in more areas of the world, the technology required to design and maintain their complex battery systems is needed not only by the vehicle designers, but by those who will provide recharging and maintenance services, as well as utility infrastructure providers. Includes fuel cell and hybrid vehicle applications.Written with cost and efficiency foremost in mind, Electric Vehicle Battery Systems offers essential details on failure mode analysis of VRLA, NiMH battery systems, the fast-charging of electric vehicle battery systems based on Pb-acid, NiMH, Li-ion technologies, and much more. Key coverage includes issues that can affect electric vehicle performance, such as total battery capacity, battery charging and discharging, and battery temperature constraints. The author also explores electric vehicle performance, battery testing (15 core performance tests provided), lithium-ion batteries, fuel cells and hybrid vehicles. In order to make a practical electric vehicle, a thorough understanding of the operation of a set of batteries in a pack is necessary. Expertly written and researched, Electric Vehicle Battery Systems will prove invaluable to automotive engineers, electronics and integrated circuit design engineers, and anyone whose interests involve electric vehicles and battery systems.* Addresses cost and efficiency as key elements in the design process* Provides comprehensive coverage of the theory, operation, and configuration of complex battery systems, including Pb-acid, NiMH, and Li-ion technologies* Provides comprehensive coverage of the theory, operation, and configuration of complex battery systems, including Pb-acid, NiMH, and Li-ion technologies


Battery Management Algorithm for Electric Vehicles

Battery Management Algorithm for Electric Vehicles

Author: Rui Xiong

Publisher: Springer Nature

Published: 2019-09-23

Total Pages: 310

ISBN-13: 981150248X

DOWNLOAD EBOOK

This book systematically introduces readers to the core algorithms of battery management system (BMS) for electric vehicles. These algorithms cover most of the technical bottlenecks encountered in BMS applications, including battery system modeling, state of charge (SOC) and state of health (SOH) estimation, state of power (SOP) estimation, remaining useful life (RUL) prediction, heating at low temperature, and optimization of charging. The book not only presents these algorithms, but also discusses their background, as well as related experimental and hardware developments. The concise figures and program codes provided make the calculation process easy to follow and apply, while the results obtained are presented in a comparative way, allowing readers to intuitively grasp the characteristics of different algorithms. Given its scope, the book is intended for researchers, senior undergraduate and graduate students, as well as engineers in the fields of electric vehicles and energy storage.


Energy Storage and Management for Electric Vehicles

Energy Storage and Management for Electric Vehicles

Author: James Marco

Publisher: MDPI

Published: 2020-01-15

Total Pages: 238

ISBN-13: 303921862X

DOWNLOAD EBOOK

This Special Edition of Energies on “Energy Storage and Management for Electric Vehicles” draws together a collection of research papers that critically evaluates key areas of innovation and novelty when designing and managing the high-voltage battery system within an electrified powertrain. The addressed topics include design optimisation, mathematical modelling, control engineering, thermal management, and component sizing.


Artificial Intelligent Techniques for Electric and Hybrid Electric Vehicles

Artificial Intelligent Techniques for Electric and Hybrid Electric Vehicles

Author: Chitra A.

Publisher: John Wiley & Sons

Published: 2020-07-21

Total Pages: 288

ISBN-13: 1119681901

DOWNLOAD EBOOK

Electric vehicles are changing transportation dramatically and this unique book merges the many disciplines that contribute research to make EV possible, so the reader is informed about all the underlying science and technologies driving the change. An emission-free mobility system is the only way to save the world from the greenhouse effect and other ecological issues. This belief has led to a tremendous growth in the demand for electric vehicles (EV) and hybrid electric vehicles (HEV), which are predicted to have a promising future based on the goals fixed by the European Commission's Horizon 2020 program. This book brings together the research that has been carried out in the EV/HEV sector and the leading role of advanced optimization techniques with artificial intelligence (AI). This is achieved by compiling the findings of various studies in the electrical, electronics, computer, and mechanical domains for the EV/HEV system. In addition to acting as a hub for information on these research findings, the book also addresses the challenges in the EV/HEV sector and provides proven solutions that involve the most promising AI techniques. Since the commercialization of EVs/HEVs still remains a challenge in industries in terms of performance and cost, these are the two tradeoffs which need to be researched in order to arrive at an optimal solution. Therefore, this book focuses on the convergence of various technologies involved in EVs/HEVs. Since all countries will gradually shift from conventional internal combustion (IC) engine-based vehicles to EVs/HEVs in the near future, it also serves as a useful reliable resource for multidisciplinary researchers and industry teams.


Thermal Management of Electric Vehicle Battery Systems

Thermal Management of Electric Vehicle Battery Systems

Author: Ibrahim Din¿er

Publisher: John Wiley & Sons

Published: 2017-03-20

Total Pages: 365

ISBN-13: 1118900243

DOWNLOAD EBOOK

Thermal Management of Electric Vehicle Battery Systems provides a thorough examination of various conventional and cutting edge electric vehicle (EV) battery thermal management systems (including phase change material) that are currently used in the industry as well as being proposed for future EV batteries. It covers how to select the right thermal management design, configuration and parameters for the users’ battery chemistry, applications and operating conditions, and provides guidance on the setup, instrumentation and operation of their thermal management systems (TMS) in the most efficient and effective manner. This book provides the reader with the necessary information to develop a capable battery TMS that can keep the cells operating within the ideal operating temperature ranges and uniformities, while minimizing the associated energy consumption, cost and environmental impact. The procedures used are explained step-by-step, and generic and widely used parameters are utilized as much as possible to enable the reader to incorporate the conducted analyses to the systems they are working on. Also included are comprehensive thermodynamic modelling and analyses of TMSs as well as databanks of component costs and environmental impacts, which can be useful for providing new ideas on improving vehicle designs. Key features: Discusses traditional and cutting edge technologies as well as research directions Covers thermal management systems and their selection for different vehicles and applications Includes case studies and practical examples from the industry Covers thermodynamic analyses and assessment methods, including those based on energy and exergy, as well as exergoeconomic, exergoenvironmental and enviroeconomic techniques Accompanied by a website hosting codes, models, and economic and environmental databases as well as various related information Thermal Management of Electric Vehicle Battery Systems is a unique book on electric vehicle thermal management systems for researchers and practitioners in industry, and is also a suitable textbook for senior-level undergraduate and graduate courses.


Handbook on Battery Energy Storage System

Handbook on Battery Energy Storage System

Author: Asian Development Bank

Publisher: Asian Development Bank

Published: 2018-12-01

Total Pages: 123

ISBN-13: 9292614711

DOWNLOAD EBOOK

This handbook serves as a guide to deploying battery energy storage technologies, specifically for distributed energy resources and flexibility resources. Battery energy storage technology is the most promising, rapidly developed technology as it provides higher efficiency and ease of control. With energy transition through decarbonization and decentralization, energy storage plays a significant role to enhance grid efficiency by alleviating volatility from demand and supply. Energy storage also contributes to the grid integration of renewable energy and promotion of microgrid.


Electric Vehicles and the Future of Energy Efficient Transportation

Electric Vehicles and the Future of Energy Efficient Transportation

Author: Subramaniam, Umashankar

Publisher: IGI Global

Published: 2021-04-16

Total Pages: 293

ISBN-13: 1799876284

DOWNLOAD EBOOK

The electric vehicle market has been gradually gaining prominence in the world due to the rise in pollution levels caused by traditional IC engine-based vehicles. The advantages of electric vehicles are multi-pronged in terms of cost, energy efficiency, and environmental impact. The running and maintenance cost are considerably less than traditional models. The harmful exhaust emissions are reduced, besides the greenhouse gas emissions, when the electric vehicle is supplied from a renewable energy source. However, apart from some Western nations, many developing and underdeveloped countries have yet to take up this initiative. This lack of enthusiasm has been primarily attributed to the capital investment required for charging infrastructure and the slow transition of energy generation from the fossil fuel to the renewable energy format. Currently, there are very few charging stations, and the construction of the same needs to be ramped up to supplement the growth of electric vehicles. Grid integration issues also crop up when the electric vehicle is used to either do supply addition to or draw power from the grid. These problems need to be fixed at all the levels to enhance the future of energy efficient transportation. Electric Vehicles and the Future of Energy Efficient Transportation explores the growth and adoption of electric vehicles for the purpose of sustainable transportation and presents a critical analysis in terms of the economics, technology, and environmental perspectives of electric vehicles. The chapters cover the benefits and limitations of electric vehicles, techno-economic feasibility of the technologies being developed, and the impact this has on society. Specific points of discussion include electric vehicle architecture, wireless power transfer, battery management, and renewable resources. This book is of interest for individuals in the automotive sector and allied industries, policymakers, practitioners, engineers, technicians, researchers, academicians, and students looking for updated information on the technology, economics, policy, and environmental aspects of electric vehicles.


Battery Management Systems of Electric and Hybrid Electric Vehicles

Battery Management Systems of Electric and Hybrid Electric Vehicles

Author: Nicolae Tudoroiu

Publisher: MDPI

Published: 2021-08-30

Total Pages: 146

ISBN-13: 3036510605

DOWNLOAD EBOOK

The topics of interest in this book include significant challenges in the BMS design of EV/HEV. The equivalent models developed for several types of integrated Li-ion batteries consider the environmental temperature and ageing effects. Different current profiles for testing the robustness of the Kalman filter type estimators of the battery state of charge are used in this book. Additionally, the BMS can integrate a real-time model-based sensor Fault Detection and Isolation (FDI) scheme for a Li-ion cell undergoing degradation, which uses the recursive least squares (RLS) method to estimate the equivalent circuit model (ECM) parameters. This book will fully meet the demands of a large community of readers and specialists working in the field due to its attractiveness and scientific content with a great openness to the side of practical applicability. This covers various interesting aspects, especially related to the characterization of commercial batteries, diagnosis and optimization of their performance, experimental testing and statistical analysis, thermal modelling, and implementation of the most suitable Kalman filter type estimators of high accuracy to estimate the state of charge