Energy Materials Discovery

Energy Materials Discovery

Author: Geoffrey A Ozin

Publisher: Royal Society of Chemistry

Published: 2022-06-13

Total Pages: 464

ISBN-13: 1839163836

DOWNLOAD EBOOK

Materials have the potential to be the centrepiece for the transition to viable renewable energy technologies if they realise a specific suite of properties and achieve a desired set of performance metrics. The envisioned transition involves the discovery of materials that enable generation, conversion, storage, transmission, and utilization of renewable energy. This book presents, through the eye of materials chemistry, an umbrella view of the myriad of classes of materials that make renewable energy technologies work. They are poised to facilitate the transition of non-renewable and unsustainable energy systems of the past into renewable and sustainable energy systems of the future. It is a story that often begins in chemistry laboratories with the discovery of new energy materials. Yet, to displace materials in existing energy technologies with new ones, depends not only on the ability to design and engineer a superior set of performance metrics for the material and the technology but also the requirement to meet a demanding collection of economic, regulatory, social, policy, environmental and sustainability criteria. Disruption in the traditional way of discovering materials is coming with the emergence of artificial intelligence, machine learning and robotic automation designed to accelerate the well-established discovery process, massive libraries of materials can be evaluated and the possibilities are endless. This book provides a perspective on the application of these new technologies to this field as well as an overview of energy materials discovery in the broader techno-economic and social context. Any budding researcher or more experienced materials scientist will find a guide to a fascinating story of discovery and emerge with a vision of what is next.


Energy Materials Discovery

Energy Materials Discovery

Author: Geoffrey A Ozin

Publisher: Royal Society of Chemistry

Published: 2022-06-13

Total Pages: 443

ISBN-13: 1839163844

DOWNLOAD EBOOK

Materials have the potential to be the centrepiece for the transition to viable renewable energy technologies if they realise a specific suite of properties and achieve a desired set of performance metrics. The envisioned transition involves the discovery of materials that enable generation, conversion, storage, transmission, and utilization of renewable energy. This book presents, through the eye of materials chemistry, an umbrella view of the myriad of classes of materials that make renewable energy technologies work. They are poised to facilitate the transition of non-renewable and unsustainable energy systems of the past into renewable and sustainable energy systems of the future. It is a story that often begins in chemistry laboratories with the discovery of new energy materials. Yet, to displace materials in existing energy technologies with new ones, depends not only on the ability to design and engineer a superior set of performance metrics for the material and the technology but also the requirement to meet a demanding collection of economic, regulatory, social, policy, environmental and sustainability criteria. Disruption in the traditional way of discovering materials is coming with the emergence of artificial intelligence, machine learning and robotic automation designed to accelerate the well-established discovery process, massive libraries of materials can be evaluated and the possibilities are endless. This book provides a perspective on the application of these new technologies to this field as well as an overview of energy materials discovery in the broader techno-economic and social context. Any budding researcher or more experienced materials scientist will find a guide to a fascinating story of discovery and emerge with a vision of what is next.


Computational Materials Discovery

Computational Materials Discovery

Author: Artem Oganov

Publisher: Royal Society of Chemistry

Published: 2018-10-30

Total Pages: 470

ISBN-13: 1782629610

DOWNLOAD EBOOK

A unique and timely book providing an overview of both the methodologies and applications of computational materials design.


Application of Artificial Intelligence in New Materials Discovery

Application of Artificial Intelligence in New Materials Discovery

Author: Inamuddin

Publisher: Materials Research Forum LLC

Published: 2023-07-05

Total Pages: 147

ISBN-13: 1644902524

DOWNLOAD EBOOK

The book is concerned with the use of Artificial Intelligence in the discovery, production and application of new engineering materials. Topics covered include nano-robots. data mining, solar energy systems, materials genomics, polymer manufacturing, and energy conversion issues. Keywords: Artificial Intelligence, Mathematical Models, Machine Learning, Artificial Neural Networks, Bayesian Analysis, Vector Machines, Heuristics, Crystal Structure, Component Prediction, Process Optimization, Density Functional Theory, Monitoring, Classification, Nano-Robots, Data Mining, Solar Photovoltaics, Renewable Energy Systems, Alternative Energy Sources, Material Genomics, Polymer Manufacturing, Energy Conversion.


Materials Discovery and Design

Materials Discovery and Design

Author: Turab Lookman

Publisher: Springer

Published: 2018-09-22

Total Pages: 266

ISBN-13: 3319994654

DOWNLOAD EBOOK

This book addresses the current status, challenges and future directions of data-driven materials discovery and design. It presents the analysis and learning from data as a key theme in many science and cyber related applications. The challenging open questions as well as future directions in the application of data science to materials problems are sketched. Computational and experimental facilities today generate vast amounts of data at an unprecedented rate. The book gives guidance to discover new knowledge that enables materials innovation to address grand challenges in energy, environment and security, the clearer link needed between the data from these facilities and the theory and underlying science. The role of inference and optimization methods in distilling the data and constraining predictions using insights and results from theory is key to achieving the desired goals of real time analysis and feedback. Thus, the importance of this book lies in emphasizing that the full value of knowledge driven discovery using data can only be realized by integrating statistical and information sciences with materials science, which is increasingly dependent on high throughput and large scale computational and experimental data gathering efforts. This is especially the case as we enter a new era of big data in materials science with the planning of future experimental facilities such as the Linac Coherent Light Source at Stanford (LCLS-II), the European X-ray Free Electron Laser (EXFEL) and MaRIE (Matter Radiation in Extremes), the signature concept facility from Los Alamos National Laboratory. These facilities are expected to generate hundreds of terabytes to several petabytes of in situ spatially and temporally resolved data per sample. The questions that then arise include how we can learn from the data to accelerate the processing and analysis of reconstructed microstructure, rapidly map spatially resolved properties from high throughput data, devise diagnostics for pattern detection, and guide experiments towards desired targeted properties. The authors are an interdisciplinary group of leading experts who bring the excitement of the nascent and rapidly emerging field of materials informatics to the reader.


Advanced X-ray Imaging of Electrochemical Energy Materials and Devices

Advanced X-ray Imaging of Electrochemical Energy Materials and Devices

Author: Jiajun Wang

Publisher: Springer Nature

Published: 2021-10-02

Total Pages: 252

ISBN-13: 9811653283

DOWNLOAD EBOOK

This book comprehensively outlines synchrotron-based X-ray imaging technologies and their associated applications in gaining fundamental insights into the physical and chemical properties as well as reaction mechanisms of energy materials. In this book the major X-ray imaging technologies utilised, depending on research goals and sample specifications, are discussed. With X-ray imaging techniques, the morphology, phase, lattice and strain information of energy materials in both 2D and 3D can be obtained in an intuitive way. In addition, due to the high penetration of X-rays, operando/in situ experiments can be designed to track the qualitative and quantitative changes of the samples during operation. This book will broader the reader’s view on X-ray imaging techniques and inspire new ideas and possibilities in energy materials research.


Materials Research to Meet 21st-Century Defense Needs

Materials Research to Meet 21st-Century Defense Needs

Author: National Research Council

Publisher: National Academies Press

Published: 2003-03-25

Total Pages: 660

ISBN-13: 0309087007

DOWNLOAD EBOOK

In order to achieve the revolutionary new defense capabilities offered by materials science and engineering, innovative management to reduce the risks associated with translating research results will be needed along with the R&D. While payoff is expected to be high from the promising areas of materials research, many of the benefits are likely to be evolutionary. Nevertheless, failure to invest in more speculative areas of research could lead to undesired technological surprises. Basic research in physics, chemistry, biology, and materials science will provide the seeds for potentially revolutionary technologies later in the 21st century.


Energy and Civilization

Energy and Civilization

Author: Vaclav Smil

Publisher: MIT Press

Published: 2018-11-13

Total Pages: 564

ISBN-13: 0262536161

DOWNLOAD EBOOK

A comprehensive account of how energy has shaped society throughout history, from pre-agricultural foraging societies through today's fossil fuel–driven civilization. "I wait for new Smil books the way some people wait for the next 'Star Wars' movie. In his latest book, Energy and Civilization: A History, he goes deep and broad to explain how innovations in humans' ability to turn energy into heat, light, and motion have been a driving force behind our cultural and economic progress over the past 10,000 years. —Bill Gates, Gates Notes, Best Books of the Year Energy is the only universal currency; it is necessary for getting anything done. The conversion of energy on Earth ranges from terra-forming forces of plate tectonics to cumulative erosive effects of raindrops. Life on Earth depends on the photosynthetic conversion of solar energy into plant biomass. Humans have come to rely on many more energy flows—ranging from fossil fuels to photovoltaic generation of electricity—for their civilized existence. In this monumental history, Vaclav Smil provides a comprehensive account of how energy has shaped society, from pre-agricultural foraging societies through today's fossil fuel–driven civilization. Humans are the only species that can systematically harness energies outside their bodies, using the power of their intellect and an enormous variety of artifacts—from the simplest tools to internal combustion engines and nuclear reactors. The epochal transition to fossil fuels affected everything: agriculture, industry, transportation, weapons, communication, economics, urbanization, quality of life, politics, and the environment. Smil describes humanity's energy eras in panoramic and interdisciplinary fashion, offering readers a magisterial overview. This book is an extensively updated and expanded version of Smil's Energy in World History (1994). Smil has incorporated an enormous amount of new material, reflecting the dramatic developments in energy studies over the last two decades and his own research over that time.


Intrinsic Structures and Properties of Energetic Materials

Intrinsic Structures and Properties of Energetic Materials

Author: Chaoyang Zhang

Publisher: Springer Nature

Published: 2023-06-30

Total Pages: 469

ISBN-13: 9819926998

DOWNLOAD EBOOK

This book highlights the intrinsic structures of all kinds of energetic compounds and some structure–property relationships therein. Energetic materials are a class of energy materials that can transiently release a large amount of gases and heat by self-redox after stimulated and usually refer to explosives, propellants and pyrotechnics. Nowadays, in combination with various theories and simulation-aided material design technologies, many new kinds of energetic materials like energetic extended solids, energetic ionic salts, energetic metal organic frames, energetic co-crystals and energetic perovskites have been created, in addition to traditional energetic molecular crystals. It is somewhat dazzling, and an issue of how we can understand these new types of energetic materials is raised. In the past about 20 years, we were immersed in the computational energetic materials. By means of defining a concept of intrinsic structures of energetic materials, which refers to the crystal packing structure of energetic materials, as well as molecule for molecular solid specially, the microscopic structures have been mostly clarified, and related with many macroscopic properties and performances, with molecular simulations. This book presents our understanding about it. Thereby, a simply and new way to readily understand energetic materials is expected to be paved, based on this book. It contains energetic molecular crystals, energetic ionic crystals, energetic atomic crystals, energetic metallic crystals and energetic mixed-type crystals and the substructures closest to crystal packing. Meanwhile, the common intermolecular interactions in energetic crystals will be introduced. In addition, theoretical and simulation methods for treating the intrinsic structures will be briefed, as they are the main tools to reveal the molecules and crystals. Besides, the polymorphism as a level of intrinsic structures will be briefly discussed. In the final of this book, we introduce the crystal engineering of energetic materials. This book features the first proposal of intrinsic structure and crystal engineering of energetic materials and the understanding of the properties and performances of energetic materials by maintaining a concept that structure determines property. It helps to promote the rationality in creating new energetic materials, rather than increase experience.