Wireless Sensor Networks have a wide range of applications in different areas. Their main constraint is the limited and irreplaceable power source of the sensor nodes. In many applications, energy conservation of the sensor nodes and their replacement or replenishment due to the hostile nature of the environment is the most challenging issue. Energy efficient clustering and routing are the two main important topics studied extensively for this purpose. This book focuses on the energy efficient clustering and routing with a great emphasis on the evolutionary approaches. It provides a comprehensive and systematic introduction of the fundamentals of WSNs, major issues and effective solutions.
Wireless Sensor Networks have a wide range of applications in different areas. Their main constraint is the limited and irreplaceable power source of the sensor nodes. In many applications, energy conservation of the sensor nodes and their replacement or replenishment due to the hostile nature of the environment is the most challenging issue. Energy efficient clustering and routing are the two main important topics studied extensively for this purpose. This book focuses on the energy efficient clustering and routing with a great emphasis on the evolutionary approaches. It provides a comprehensive and systematic introduction of the fundamentals of WSNs, major issues and effective solutions.
"Wireless Sensor Networks have a wide range of applications in different areas. Their main constraint is the limited and irreplaceable power source of the sensor nodes. In many applications, energy conservation of the sensor nodes and their replacement or replenishment due to the hostile nature of the environment is the most challenging issue. Energy efficient clustering and routing are the two main important topics studied extensively for this purpose. This book focuses on the energy efficient clustering and routing with a great emphasis on the evolutionary approaches. It provides a comprehensive and systematic introduction of the fundamentals of WSNs, major issues and effective solutions."--Provided by publisher.
With the rapid growth of technology in society, communication networks have become a heavily researched topic. Implementing these advanced systems is a challenge, however, due to the abundance of optimization problems within these networks. The use of meta-heuristic algorithms and nature-inspired computing has become a prevalent technique among researchers for solving these complex problems within communication networks. Despite its popularity, this specific computing technique lacks the appropriate amount of research that is needed for professionals to grasp a definite understanding. Nature-Inspired Computing Applications in Advanced Communication Networks is a collection of innovative research on the methods and applications of natural computation techniques and algorithms within communication systems such as wireless sensor networks, vehicular adhoc networks, and internet of things. While highlighting topics including mobile sensor deployment, routing optimization, and sleep scheduling, this book is ideally designed for researchers, network professionals, computer scientists, mathematicians, developers, scholars, educators, and students seeking to enhance their understanding of nature-inspired computing and its solutions within various advanced communication networks.
This book constitutes the refereed proceedings of the 9th International Conference on Distributed Computing and Internet Technology, ICDCIT 2013, held in Bhubaneswar, India, in February 2013. The 40 full papers presented together with 5 invited talks in this volume were carefully reviewed and selected from 164 submissions. The papers cover various research aspects in distributed computing, internet technology, computer networks, and machine learning.
This book constitutes the proceedings of three International Conferences, NeCoM 2011, on Networks & Communications, WeST 2011, on Web and Semantic Technology, and WiMoN 2011, on Wireless and Mobile Networks, jointly held in Chennai, India, in July 2011. The 74 revised full papers presented were carefully reviewed and selected from numerous submissions. The papers address all technical and practical aspects of networks and communications in wireless and mobile networks dealing with issues such as network protocols and wireless networks, data communication technologies, and network security; they present knowledge and results in theory, methodology and applications of the Web and semantic technologies; as well as current research on wireless and mobile communications, networks, protocols and on wireless and mobile security.
Collecting and processing data is a necessary aspect of living in a technologically advanced society. Whether it’s monitoring events, controlling different variables, or using decision-making applications, it is important to have a system that is both inexpensive and capable of coping with high amounts of data. As the application of these networks becomes more common, it becomes imperative to evaluate their effectiveness as well as other opportunities for possible implementation in the future. Sensor Technology: Concepts, Methodologies, Tools, and Applications is a vital reference source that brings together new ways to process and monitor data and to put it to work in everything from intelligent transportation systems to healthcare to multimedia applications. It also provides inclusive coverage on the processing and applications of wireless communication, sensor networks, and mobile computing. Highlighting a range of topics such as internet of things, signal processing hardware, and wireless sensor technologies, this multi-volume book is ideally designed for research and development engineers, IT specialists, developers, graduate students, academics, and researchers.
This book constitutes the refereed proceedings of the 5th International Workshop on Ant Colony Optimization and Swarm Intelligence, ANTS 2006, held in Brussels, Belgium, in September 2006. The 27 revised full papers, 23 revised short papers, and 12 extended abstracts presented were carefully reviewed and selected from 115 submissions.
ARTIFICIAL INTELLIGENCE FOR RENEWABLE ENERGY SYSTEMS Renewable energy systems, including solar, wind, biodiesel, hybrid energy, and other relevant types, have numerous advantages compared to their conventional counterparts. This book presents the application of machine learning and deep learning techniques for renewable energy system modeling, forecasting, and optimization for efficient system design. Due to the importance of renewable energy in today’s world, this book was designed to enhance the reader’s knowledge based on current developments in the field. For instance, the extraction and selection of machine learning algorithms for renewable energy systems, forecasting of wind and solar radiation are featured in the book. Also highlighted are intelligent data, renewable energy informatics systems based on supervisory control and data acquisition (SCADA); and intelligent condition monitoring of solar and wind energy systems. Moreover, an AI-based system for real-time decision-making for renewable energy systems is presented; and also demonstrated is the prediction of energy consumption in green buildings using machine learning. The chapter authors also provide both experimental and real datasets with great potential in the renewable energy sector, which apply machine learning (ML) and deep learning (DL) algorithms that will be helpful for economic and environmental forecasting of the renewable energy business. Audience The primary target audience includes research scholars, industry engineers, and graduate students working in renewable energy, electrical engineering, machine learning, information & communication technology.
The book comprises selected papers presented at the International Conference on Advanced Computing, Networking and Informatics (ICANI 2018), organized by Medi-Caps University, India. It includes novel and original research work on advanced computing, networking and informatics, and discusses a wide variety of industrial, engineering and scientific applications of the emerging techniques in the field of computing and networking.