Energy consumption is of great interest to manufacturing companies. Beyond considering individual processes and machines, the perspective on process chains and factories as a whole holds major potentials for energy efficiency improvements. To exploit these potentials, dynamic interactions of different processes as well as auxiliary equipment (e.g. compressed air generation) need to be taken into account. In addition, planning and controlling manufacturing systems require balancing technical, economic and environmental objectives. Therefore, an innovative and comprehensive methodology – with a generic energy flow-oriented manufacturing simulation environment as a core element – is developed and embedded into a step-by-step application cycle. The concept is applied in its entirety to a wide range of case studies such as aluminium die casting, weaving mills, and printed circuit board assembly in order to demonstrate the broad applicability and the benefits that can be achieved.
Over the last several years, manufacturers have expressed increasing interest in reducing their energy consumption and have begun to search for opportunities to reduce their energy usage. In this book, the authors explore a variety of opportunities to reduce the energy footprint of manufacturing. These opportunities cover the entire spatial scale of the manufacturing enterprise: from unit process-oriented approaches to enterprise-level strategies. Each chapter examines some aspect of this spatial scale, and discusses and describes the opportunities that exist at that level. Case studies demonstrate how the opportunity may be acted on with practical guidance on how to respond to these opportunities.
This monograph presents a reliable methodology for characterising the energy and eco-efficiency of unit manufacturing processes. The Specific Energy Consumption, SEC, will be identified as the key indicator for the energy efficiency of unit processes. An empirical approach will be validated on different machine tools and manufacturing processes to depict the relationship between process parameters and energy consumptions. Statistical results and additional validation runs will corroborate the high level of accuracy in predicting the energy consumption. In relation to the eco-efficiency, the value and the associated environmental impacts of manufacturing processes will also be discussed. The interrelationship between process parameters, process value and the associated environmental impact will be integrated in the evaluation of eco-efficiency. The book concludes with a further investigation of the results in order to develop strategies for further efficiency improvement. The target audience primarily comprises researchers and experts in the field, but the book may also be beneficial for graduate students.
This Special Issue addresses the important issue of the energy efficiency of both manufacturing processes and systems. Manufacturing is responsible for one-third of global energy consumption and CO2 emissions. Thus, improving the energy efficiency of production has been the focus of research in recent years. Energy efficiency has begun to be considered as one of the key decision-making attributes for manufacturing. This book includes recent studies on methods for the measurement of energy efficiency, tools and techniques for the analysis and development of improvements with regards to energy consumption, modeling and simulation of energy efficiency, and the integration of green and lean manufacturing. This book presents a breadth of relevant information, material, and knowledge to support research, policy-making, practices, and experience transferability to address the issues of energy efficiency.
This book provides energy efficiency quantitative analysis and optimal methods for discrete manufacturing systems from the perspective of global optimization. In order to analyze and optimize energy efficiency for discrete manufacturing systems, it uses real-time access to energy consumption information and models of the energy consumption, and constructs an energy efficiency quantitative index system. Based on the rough set and analytic hierarchy process, it also proposes a principal component quantitative analysis and a combined energy efficiency quantitative analysis. In turn, the book addresses the design and development of quantitative analysis systems. To save energy consumption on the basis of energy efficiency analysis, it presents several optimal control strategies, including one for single-machine equipment, an integrated approach based on RWA-MOPSO, and one for production energy efficiency based on a teaching and learning optimal algorithm. Given its scope, the book offers a valuable guide for students, teachers, engineers and researchers in the field of discrete manufacturing systems.
The Advanced Research Institute (A.R. 1.) on "the efficiency of Manufacturing Systems" was held under the auspices of the NATO Special Programm~ Panel on Systems Science as a part of the NATO Science Committee's continuous effort to promote the advancement of science through international co-operation. Advanced Research Institutes are organised for the purpose of bringing together experts in a particular field of interest to identify and make known the present state of knowledge in that area and, through informed debate, to make recommendations for directions for future research that would benefit the community at large. To this end two kinds of contribution were obtained by invitation. There were those papers which were about the current state of work in the area of manufacturing systems and its organisation; in addition three theme papers were presented to provide a stimulus to the discussion in terms of ways of thinking, both about the area and about the kind of research needed.
Industrial energy efficiency is one of the most important means of reducing the threat of increased global warming. Research however states that despite the existence of numerous technical energy efficiency measures, its deployment is hindered by the existence of various barriers to energy efficiency. The complexity of increasing energy efficiency in manufacturing industry calls for an interdisciplinary approach to the issue. Improving energy efficiency in industrial energy systems applies an interdisciplinary perspective in examining energy efficiency in industrial energy systems, and discusses how “cross-pollinating” perspectives and theories from the social and engineering sciences can enhance our understanding of barriers, energy audits, energy management, policies, and programmes as they pertain to improved energy efficiency in industry. Apart from classical technical approaches from engineering sciences, Improving energy efficiency in industrial energy systems couples a sociotechnical perspective to increased energy efficiency in industry, showing that industrial energy efficiency can be expected to be shaped by social and commercial processes and built on knowledge, routines, institutions, and methods established in networks. The book can be read by researchers and policy-makers, as well as scholars and practicians in the field. “This book is extremely valuable for anyone who is designing or executing energy efficiency policies, schemes or projects aiming at SMEs. Both authors deserve the highest respect, and the combination of their expertise makes the results truly unique.” - Daniel Lundqvist, programme manager at the Swedish energy agency “For anyone interested in improving energy efficiency in industry, this is a must-read. The book combines tools from social science and engineering to discuss the state of art today as well as possible development path tomorrow. This is a compelling book that I find useful both in my teaching and my research.” - Kajsa Ellegård, Professor at Linköping University, Sweden "The book Improving energy efficiency in industrial energy systems is a novel approach on how improved levels of energy efficiency can be reached in industrial energy systems by merging engineering with social sciences. It is with delight that I can recommend their book to anyone interested in the field.”- Mats Söderström, Director Energy Systems Programme, Linköping University, Sweden
Overviews manufacturing systems from the ground up, following the same concept as in the first edition. Delves into the fundamental building blocks of manufacturing systems: manufacturing processes and equipment. Discusses all topics from the viewpoint of four fundamental manufacturing attributes: cost, rate, flexibility and quality.
Sustainable Manufacturing examines the overall sustainability of a wide range of manufacturing processes and industrial systems. With chapters addressing machining, casting, additive and gear manufacturing processes; and hot topics such as remanufacturing, life cycle engineering, and recycling, this book is the most complete guide to this topic available. Drawing on experts in both academia and industry, coverage addresses theoretical developments and practical improvements from research and innovations. This unique book will advise readers on how to achieve sustainable manufacturing processes and systems, and further the clean and safe environment. This handbook is a part of the four volume set entitled Handbooks in Advanced Manufacturing. The other three address Advanced Machining and Finishing, Advanced Welding and Deforming, and Additive Manufacturing. - Provides basic to advanced level information on various aspects of sustainable manufacturing - Presents the strategies and techniques to achieve sustainability in numerous areas of manufacturing and industrial engineering such as environmentally benign machining, sustainable additive manufacturing, remanufacturing and recycling, sustainable supply chain, and life cycle engineering - Combines contributions from experts in academia and industry with the latest research and case studies - Explains how to attain a clean, green, and safe environment via sustainable manufacturing - Presents recent developments and suggests future research directions
The manufacturing system is going through substantial changes and developments in light of Industry 4.0. Newer manufacturing technologies are being developed and applied. There is a need to optimize these techniques when applied in different circumstances with respect to materials, tools, product configurations, and process parameters. This book covers computational intelligence applied to manufacturing. It discusses nature-inspired optimization of processes and their design and development in manufacturing systems. It explores all manufacturing processes, at both macro and micro levels, and offers manufacturing philosophies. Nonconventional manufacturing, real industry problems and case studies, research on generative processes, and relevance of all this to Industry 4.0 is also included. Researchers, students, academicians, and industry professionals will find this reference title very useful.