Concerns over an unstable energy supply and the adverse environmental impact of carbonaceous fuels have triggered considerable efforts worldwide to find carbon-free or low-carbon alternatives to conventional fossil fuels. Carbon-Neutral Fuels and Energy Carriers emphasizes the vital role of carbon-neutral energy sources, transportation fuels, and associated technologies for establishing a sustainable energy future. Each chapter draws on the insight of world-renowned experts in such diverse fields as photochemistry and electrochemistry, solar and nuclear energy, biofuels and synthetic fuels, carbon sequestration, and alternative fuel vehicles. After an introductory chapter on different energy options in a carbon-constrained world and proposed measures to stabilize atmospheric CO2, the book analyzes the advantages and challenges facing the introduction of hydrogen fuel to the marketplace. It then examines the role of nuclear power in the production of carbon-free energy and fuels as well as the efficient use and storage of renewable energy resources, emphasizing the production of solar fuels from water and CO2. The book also discusses different aspects of bioenergy and biofuels production and use and the potential role of bio-inspired energy systems and industrial processes. The final chapters present a thorough overview and analysis of state-of-the-art fossil fuel decarbonization technologies and clean transportation options. This authoritative work provides the information needed to make more informed choices regarding available clean energy and fuel alternatives. It helps readers to better understand the interconnection between energy and the environment as well as the potential impact of human activities on climate.
Chemistry and chemical engineering have changed significantly in the last decade. They have broadened their scopeâ€"into biology, nanotechnology, materials science, computation, and advanced methods of process systems engineering and controlâ€"so much that the programs in most chemistry and chemical engineering departments now barely resemble the classical notion of chemistry. Beyond the Molecular Frontier brings together research, discovery, and invention across the entire spectrum of the chemical sciencesâ€"from fundamental, molecular-level chemistry to large-scale chemical processing technology. This reflects the way the field has evolved, the synergy at universities between research and education in chemistry and chemical engineering, and the way chemists and chemical engineers work together in industry. The astonishing developments in science and engineering during the 20th century have made it possible to dream of new goals that might previously have been considered unthinkable. This book identifies the key opportunities and challenges for the chemical sciences, from basic research to societal needs and from terrorism defense to environmental protection, and it looks at the ways in which chemists and chemical engineers can work together to contribute to an improved future.
Understanding the chemistry underlying sustainable energy is central to any long-term solution to meeting our future energy needs. Chemistry of Sustainable Energy presents chemistry through the lens of several sustainable energy options, demonstrating the breadth and depth of research being carried out to address issues of sustainability and the gl
Archer's Global Warming: Understanding the Forecast 2nd Edition, is the first real text to present the science and policy surrounding climate change at the right level. Accompanying videos, simulations and instructional support makes it easier to build a syllabus to improve and create new material on climate change. Archer's polished writing style makes the text entertaining while the improved pedagogy helps better understand key concepts, ideas and terms. This edition has been revised and reformulated with a new chapter template of short chapter introductions, study questions at the end, and critical thinking puzzlers throughout. Also a new asset for the BCS was created that will give ideas for assignments and topics for essays and other projects. Furthermore, a number of interactive models have been built to help understand the science and systems behind the processes.
Through innovative design, creation, processing, use, and disposal of substances, the chemical industry plays a major role in advancing applications to support sustainability in a way that will allow humanity to meet current environmental, economic, and societal needs without compromising the progress and success of future generations. Based on a workshop held in February 2005 that brought together a broad cross section of disciplines and organizations in the chemical industry, this report identifies a set of overarching Grand Challenges for Sustainability research in chemistry and chemical engineering to assist the chemical industry in defining a sustainability agenda. These Grand Challenges include life cycle analysis, renewable chemical feedstocks, and education, among others.
Energy supply is foundational to modern society, but damaging to the environment. This book takes a 'systems view', from extraction of primary fuel, through conversion to usable energy, and transportation to point of use. It explores initiatives to generate electricity in an environmentally benign manner, and decarbonise the supply of energy.
The world's dependence on fossil fuels is widely acknowledged to be a major cause of rising levels of carbon dioxide in the atmosphere. Thus there is an urgent need to develop energy sources with lower environmental impact, with attention focusing on renewable energy sources. Concise, authoritative, up-to-date and readable, this book reviews various energy technologies, as well as taking a critical look at the political, social and economic aspects. Throughout, the emphasis is on renewable energy sources (wind, wave, solar, biomass, etc), but a discussion of fossil fuels and nuclear power is also presented. This timely book, written by recognised experts, will be welcomed by those in the energy industries as well as by policy-makers, consultants and engineers. Students and lecturers will also find the material invaluable.
Provides a comprehensive practical review of the new technologies used to obtain hydrogen more efficiently via catalytic, electrochemical, bio- and photohydrogen production. Hydrogen has been gaining more attention in both transportation and stationary power applications. Fuel cell-powered cars are on the roads and the automotive industry is demanding feasible and efficient technologies to produce hydrogen. The principles and methods described herein lead to reasonable mitigation of the great majority of problems associated with hydrogen production technologies. The chapters in this book are written by distinguished authors who have extensive experience in their fields, and readers will have a chance to compare the fundamental production techniques and learn about the pros and cons of these technologies. The book is organized into three parts. Part I shows the catalytic and electrochemical principles involved in hydrogen production technologies. Part II addresses hydrogen production from electrochemically active bacteria (EAB) by decomposing organic compound into hydrogen in microbial electrolysis cells (MECs). The final part of the book is concerned with photohydrogen generation. Recent developments in the area of semiconductor-based nanomaterials, specifically semiconductor oxides, nitrides and metal free semiconductor-based nanomaterials for photocatalytic hydrogen production are extensively discussed.