Continuous Multivariate Distributions, Volume 1, Second Edition provides a remarkably comprehensive, self-contained resource for this critical statistical area. It covers all significant advances that have occurred in the field over the past quarter century in the theory, methodology, inferential procedures, computational and simulational aspects, and applications of continuous multivariate distributions. In-depth coverage includes MV systems of distributions, MV normal, MV exponential, MV extreme value, MV beta, MV gamma, MV logistic, MV Liouville, and MV Pareto distributions, as well as MV natural exponential families, which have grown immensely since the 1970s. Each distribution is presented in its own chapter along with descriptions of real-world applications gleaned from the current literature on continuous multivariate distributions and their applications.
Praise for the Third Edition “. . . an easy-to read introduction to survival analysis which covers the major concepts and techniques of the subject.” —Statistics in Medical Research Updated and expanded to reflect the latest developments, Statistical Methods for Survival Data Analysis, Fourth Edition continues to deliver a comprehensive introduction to the most commonly-used methods for analyzing survival data. Authored by a uniquely well-qualified author team, the Fourth Edition is a critically acclaimed guide to statistical methods with applications in clinical trials, epidemiology, areas of business, and the social sciences. The book features many real-world examples to illustrate applications within these various fields, although special consideration is given to the study of survival data in biomedical sciences. Emphasizing the latest research and providing the most up-to-date information regarding software applications in the field, Statistical Methods for Survival Data Analysis, Fourth Edition also includes: Marginal and random effect models for analyzing correlated censored or uncensored data Multiple types of two-sample and K-sample comparison analysis Updated treatment of parametric methods for regression model fitting with a new focus on accelerated failure time models Expanded coverage of the Cox proportional hazards model Exercises at the end of each chapter to deepen knowledge of the presented material Statistical Methods for Survival Data Analysis is an ideal text for upper-undergraduate and graduate-level courses on survival data analysis. The book is also an excellent resource for biomedical investigators, statisticians, and epidemiologists, as well as researchers in every field in which the analysis of survival data plays a role.
The first systematic, book-length treatment of the subject. Begins with a general introduction and the formal mathematical background behind qualitative and quantitative robustness. Stresses concepts. Provides selected numerical algorithms for computing robust estimates, as well as convergence proofs. Tables contain quantitative robustness information for a variety of estimates.
A valuable guide to conducting experiments and analyzing dataacross a wide range of applications Experimental design is an important component of the scientificmethod. This book provides guidance on planning efficientinvestigations. It compiles designs for a wide range ofexperimental situations not previously found in accessible form.Focusing on applications in the physical, engineering, biological,and social sciences, Planning, Construction, and StatisticalAnalysis of Comparative Experiments is a valuable guide todesigning experiments and correctly analyzing and interpreting theresults. The authors draw on their years of experience in theclassroom and as statistical consultants to research programs oncampus, in government, and in industry. The object is always tostrike the right balance between mathematical necessities andpractical constraints. Serving both as a textbook for students of intermediatestatistics and a hands-on reference for active researchers, thetext includes: A wide range of applications, including agricultural sciences,animal and biomedical sciences, and industrial engineeringstudies General formulas for estimation and hypothesis testing,presented in a unified and simplified manner Guidelines for evaluating the power and efficiency of designsthat are not perfectly balanced New developments in the design of fractional factorials withnon-prime numbers of levels in mixed-level fractionalfactorials Detailed coverage on the construction of plans and therelationship among categories of designs Thorough coverage of balanced, lattice, cyclic, and alphadesigns Strategies for sequences of fractional factorials Data sets and SAS® code on a companion web site An ideal handbook for the investigator planning a researchprogram, the text comes complete with detailed plans of experimentsand alternative approaches for added flexibility.
A timely convergence of two widely used disciplines Random Graphs for Statistical Pattern Recognition is the first book to address the topic of random graphs as it applies to statistical pattern recognition. Both topics are of vital interest to researchers in various mathematical and statistical fields and have never before been treated together in one book. The use of data random graphs in pattern recognition in clustering and classification is discussed, and the applications for both disciplines are enhanced with new tools for the statistical pattern recognition community. New and interesting applications for random graph users are also introduced. This important addition to statistical literature features: Information that previously has been available only through scattered journal articles Practical tools and techniques for a wide range of real-world applications New perspectives on the relationship between pattern recognition and computational geometry Numerous experimental problems to encourage practical applications With its comprehensive coverage of two timely fields, enhanced with many references and real-world examples, Random Graphs for Statistical Pattern Recognition is a valuable resource for industry professionals and students alike.
Praise for the Second Edition "As a comprehensive statistics reference book for quality improvement, it certainly is one of the best books available." —Technometrics This new edition continues to provide the most current, proven statistical methods for quality control and quality improvement The use of quantitative methods offers numerous benefits in the fields of industry and business, both through identifying existing trouble spots and alerting management and technical personnel to potential problems. Statistical Methods for Quality Improvement, Third Edition guides readers through a broad range of tools and techniques that make it possible to quickly identify and resolve both current and potential trouble spots within almost any manufacturing or nonmanufacturing process. The book provides detailed coverage of the application of control charts, while also exploring critical topics such as regression, design of experiments, and Taguchi methods. In this new edition, the author continues to explain how to combine the many statistical methods explored in the book in order to optimize quality control and improvement. The book has been thoroughly revised and updated to reflect the latest research and practices in statistical methods and quality control, and new features include: Updated coverage of control charts, with newly added tools The latest research on the monitoring of linear profiles and other types of profiles Sections on generalized likelihood ratio charts and the effects of parameter estimation on the properties of CUSUM and EWMA procedures New discussions on design of experiments that include conditional effects and fraction of design space plots New material on Lean Six Sigma and Six Sigma programs and training Incorporating the latest software applications, the author has added coverage on how to use Minitab software to obtain probability limits for attribute charts. new exercises have been added throughout the book, allowing readers to put the latest statistical methods into practice. Updated references are also provided, shedding light on the current literature and providing resources for further study of the topic. Statistical Methods for Quality Improvement, Third Edition is an excellent book for courses on quality control and design of experiments at the upper-undergraduate and graduate levels. the book also serves as a valuable reference for practicing statisticians, engineers, and physical scientists interested in statistical quality improvement.
Bayesian methods combine the evidence from the data at hand with previous quantitative knowledge to analyse practical problems in a wide range of areas. The calculations were previously complex, but it is now possible to routinely apply Bayesian methods due to advances in computing technology and the use of new sampling methods for estimating parameters. Such developments together with the availability of freeware such as WINBUGS and R have facilitated a rapid growth in the use of Bayesian methods, allowing their application in many scientific disciplines, including applied statistics, public health research, medical science, the social sciences and economics. Following the success of the first edition, this reworked and updated book provides an accessible approach to Bayesian computing and analysis, with an emphasis on the principles of prior selection, identification and the interpretation of real data sets. The second edition: Provides an integrated presentation of theory, examples, applications and computer algorithms. Discusses the role of Markov Chain Monte Carlo methods in computing and estimation. Includes a wide range of interdisciplinary applications, and a large selection of worked examples from the health and social sciences. Features a comprehensive range of methodologies and modelling techniques, and examines model fitting in practice using Bayesian principles. Provides exercises designed to help reinforce the reader’s knowledge and a supplementary website containing data sets and relevant programs. Bayesian Statistical Modelling is ideal for researchers in applied statistics, medical science, public health and the social sciences, who will benefit greatly from the examples and applications featured. The book will also appeal to graduate students of applied statistics, data analysis and Bayesian methods, and will provide a great source of reference for both researchers and students. Praise for the First Edition: “It is a remarkable achievement to have carried out such a range of analysis on such a range of data sets. I found this book comprehensive and stimulating, and was thoroughly impressed with both the depth and the range of the discussions it contains.” – ISI - Short Book Reviews “This is an excellent introductory book on Bayesian modelling techniques and data analysis” – Biometrics “The book fills an important niche in the statistical literature and should be a very valuable resource for students and professionals who are utilizing Bayesian methods.” – Journal of Mathematical Psychology
A vivid, hands-on discussion of the statistical methods in imaging, optics, and photonics applications In the field of imaging science, there is a growing need for students and practitioners to be equipped with the necessary knowledge and tools to carry out quantitative analysis of data. Providing a self-contained approach that is not too heavily statistical in nature, Statistics for Imaging, Optics, and Photonics presents necessary analytical techniques in the context of real examples from various areas within the field, including remote sensing, color science, printing, and astronomy. Bridging the gap between imaging, optics, photonics, and statistical data analysis, the author uniquely concentrates on statistical inference, providing a wide range of relevant methods. Brief introductions to key probabilistic terms are provided at the beginning of the book in order to present the notation used, followed by discussions on multivariate techniques such as: Linear regression models, vector and matrix algebra, and random vectors and matrices Multivariate statistical inference, including inferences about both mean vectors and covariance matrices Principal components analysis Canonical correlation analysis Discrimination and classification analysis for two or more populations and spatial smoothing Cluster analysis, including similarity and dissimilarity measures and hierarchical and nonhierarchical clustering methods Intuitive and geometric understanding of concepts is emphasized, and all examples are relatively simple and include background explanations. Computational results and graphs are presented using the freely available R software, and can be replicated by using a variety of software packages. Throughout the book, problem sets and solutions contain partial numerical results, allowing readers to confirm the accuracy of their approach; and a related website features additional resources including the book's datasets and figures. Statistics for Imaging, Optics, and Photonics is an excellent book for courses on multivariate statistics for imaging science, optics, and photonics at the upper-undergraduate and graduate levels. The book also serves as a valuable reference for professionals working in imaging, optics, and photonics who carry out data analyses in their everyday work.
The Wiley-Interscience Paperback Series consists of selected booksthat have been made more accessible to consumers in an effort toincrease global appeal and general circulation. With these newunabridged softcover volumes, Wiley hopes to extend the lives ofthese works by making them available to future generations ofstatisticians, mathematicians, and scientists. "Books such as this that bring together, clarify, and summarizerecent research can lead to a great increase of interest in thearea. . . . a major achievement in describing many aspects ofspatial data and discussing, with examples, different methods ofanalysis." –Royal Statistical Society "Dr. Ripley’s book is an excellent survey of the spatialstatistical methodology. It is very well illustrated with examples[that] give a clear view of the wide scope of the subject, the wayin which techniques often have to be tailored to particularapplications, and the different sorts of spatial data thatarise." –The Bulletin of the London Mathematics Society Spatial Statistics provides a comprehensive guide to theanalysis of spatial data. Each chapter covers a particular dataformat and the associated class of problems, introducing theory,giving computational suggestions, and providing examples. Methodsare illustrated by computer-drawn figures. The book serves as anintroduction to this rapidly growing research area formathematicians and statisticians, and as a reference to newcomputer methods for researchers in ecology, geology, archaeology,and the earth sciences.
Handbook and reference guide for students and practitioners of statistical regression-based analyses in R Handbook of Regression Analysis with Applications in R, Second Edition is a comprehensive and up-to-date guide to conducting complex regressions in the R statistical programming language. The authors' thorough treatment of "classical" regression analysis in the first edition is complemented here by their discussion of more advanced topics including time-to-event survival data and longitudinal and clustered data. The book further pays particular attention to methods that have become prominent in the last few decades as increasingly large data sets have made new techniques and applications possible. These include: Regularization methods Smoothing methods Tree-based methods In the new edition of the Handbook, the data analyst's toolkit is explored and expanded. Examples are drawn from a wide variety of real-life applications and data sets. All the utilized R code and data are available via an author-maintained website. Of interest to undergraduate and graduate students taking courses in statistics and regression, the Handbook of Regression Analysis will also be invaluable to practicing data scientists and statisticians.